We give a self-contained treatment of the existence of a regular solution to the Dirichlet problem for harmonic maps into a geodesic ball on which the squared distance function from the origin is strictly convex. No curvature assumptions on the target are required. In this route we introduce a new deformation result which permits to glue a suitable Euclidean end to the geodesic ball without violating the convexity property of the distance function from the fixed origin. We also take the occasion to analyze the relationships between different notions of Sobolev maps when the target manifold is covered by a single normal coordinate chart. In particular, we provide full details on the equivalence between the notions of traced Sobolev classes of bounded maps defined intrinsically and in terms of Euclidean isometric embeddings.

Sobolev spaces of maps and the Dirichlet problem for harmonic maps

Stefano Pigola
;
Giona Veronelli
In corso di stampa

Abstract

We give a self-contained treatment of the existence of a regular solution to the Dirichlet problem for harmonic maps into a geodesic ball on which the squared distance function from the origin is strictly convex. No curvature assumptions on the target are required. In this route we introduce a new deformation result which permits to glue a suitable Euclidean end to the geodesic ball without violating the convexity property of the distance function from the fixed origin. We also take the occasion to analyze the relationships between different notions of Sobolev maps when the target manifold is covered by a single normal coordinate chart. In particular, we provide full details on the equivalence between the notions of traced Sobolev classes of bounded maps defined intrinsically and in terms of Euclidean isometric embeddings.
In corso di stampa
Harmonic maps; Dirichlet problem; Sobolev spaces; convex exhaustions; gluing flat ends
Pigola, Stefano; Veronelli, Giona
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2069091
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact