Human serum heme-albumin (HSA-heme-Fe) displays heme-based ligand binding and (pseudo-)enzymatic properties. Here, the effect of the prototypical drug warfarin on kinetics and thermodynamics of NO binding to ferric and ferrous HSA-heme-Fe (HSA-heme-Fe(III) and HSA-heme-Fe(II), respectively) and on the NO-mediated reductive nitrosylation of the heme-Fe atom is reported; data were obtained between pH 5.5 and 9.5 at 20.0 °C. Since warfarin is a common drug, its effect on the reactivity of HSA-heme-Fe represents a relevant issue in the pharmacological therapy management. The inhibition of NO binding to HSA-heme-Fe(III) and HSA-heme-Fe(II) as well as of the NO-mediated reductive nitrosylation of the heme-Fe(III) atom by warfarin has been ascribed to drug binding to the fatty acid binding site 2 (FA2), shifting allosterically the penta-to-six coordination equilibrium of the heme-Fe atom toward the low reactive species showing the six-coordinated metal center by His146 and Tyr161 residues. These data: (i) support the role of HSA-heme-Fe in trapping NO, (ii) highlight the modulation of the heme-Fe-based reactivity by drugs, and (iii) could be relevant for the modulation of HSA functions by drugs in vivo.

Warfarin inhibits allosterically the reductive nitrosylation of ferric human serum heme-albumin

Fasano, Mauro;
2017

Abstract

Human serum heme-albumin (HSA-heme-Fe) displays heme-based ligand binding and (pseudo-)enzymatic properties. Here, the effect of the prototypical drug warfarin on kinetics and thermodynamics of NO binding to ferric and ferrous HSA-heme-Fe (HSA-heme-Fe(III) and HSA-heme-Fe(II), respectively) and on the NO-mediated reductive nitrosylation of the heme-Fe atom is reported; data were obtained between pH 5.5 and 9.5 at 20.0 °C. Since warfarin is a common drug, its effect on the reactivity of HSA-heme-Fe represents a relevant issue in the pharmacological therapy management. The inhibition of NO binding to HSA-heme-Fe(III) and HSA-heme-Fe(II) as well as of the NO-mediated reductive nitrosylation of the heme-Fe(III) atom by warfarin has been ascribed to drug binding to the fatty acid binding site 2 (FA2), shifting allosterically the penta-to-six coordination equilibrium of the heme-Fe atom toward the low reactive species showing the six-coordinated metal center by His146 and Tyr161 residues. These data: (i) support the role of HSA-heme-Fe in trapping NO, (ii) highlight the modulation of the heme-Fe-based reactivity by drugs, and (iii) could be relevant for the modulation of HSA functions by drugs in vivo.
www.elsevier.com/locate/jinorgbio
Allostery; Ferric human serum heme-albumin; Ferrous human serum heme-albumin; Nitrogen monoxide binding; Reductive nitrosylation; Warfarin; Biochemistry; Inorganic Chemistry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/2072459
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact