Empty spaces are abhorred by nature, which immediately rushes in to fill the void. Humans have learnt pretty well how to make ordered empty nanocontainers, and to get useful products out of them. When such an order is imparted to molecules, new properties may appear, often yielding advanced applications. This review illustrates how the organized void space inherently present in various materials: zeolites, clathrates, mesoporous silica/organosilica, and metal organic frameworks (MOF), for example, can be exploited to create confined, organized, and self-assembled supramolecular structures of low dimensionality. Features of the confining matrices relevant to organization are presented with special focus on molecular-level aspects. Selected examples of confined supramolecular assemblies – from small molecules to quantum dots or luminescent species – are aimed to show the complexity and potential of this approach. Natural confinement (minerals) and hyperconfinement (high pressure) provide further opportunities to understand and master the atomistic-level interactions governing supramolecular organization under nanospace restrictions.

Supramolecular Organization in Confined Nanospaces

Tabacchi, Gloria
2018-01-01

Abstract

Empty spaces are abhorred by nature, which immediately rushes in to fill the void. Humans have learnt pretty well how to make ordered empty nanocontainers, and to get useful products out of them. When such an order is imparted to molecules, new properties may appear, often yielding advanced applications. This review illustrates how the organized void space inherently present in various materials: zeolites, clathrates, mesoporous silica/organosilica, and metal organic frameworks (MOF), for example, can be exploited to create confined, organized, and self-assembled supramolecular structures of low dimensionality. Features of the confining matrices relevant to organization are presented with special focus on molecular-level aspects. Selected examples of confined supramolecular assemblies – from small molecules to quantum dots or luminescent species – are aimed to show the complexity and potential of this approach. Natural confinement (minerals) and hyperconfinement (high pressure) provide further opportunities to understand and master the atomistic-level interactions governing supramolecular organization under nanospace restrictions.
2018
https://doi.org/10.1002/cphc.201800272
https://doi.org/10.1002/cphc.201701090
https://link.growkudos.com/1lz038hqolc
https://bit.ly/320GlGJ
Clathrates; host-guest interactions; mesoporous materials; metal-organic framework; zeolites; Atomic and Molecular Physics, and Optics; Physical and Theoretical Chemistry
Tabacchi, Gloria
File in questo prodotto:
File Dimensione Formato  
Tabacchi-2018-ChemPhysChem (2).pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 39.52 MB
Formato Adobe PDF
39.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Tabacchi-2018-ChemPhysChem (2).pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 39.52 MB
Formato Adobe PDF
39.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
cphc.201701090R2_AUTHOR_VERSION.pdf

non disponibili

Descrizione: VERSIONE OPEN ACCESS DELL'AUTORE
Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 4.84 MB
Formato Adobe PDF
4.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2073010
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 54
social impact