A generalization of the Newton multi-step iterative method is presented, in the form of distinct families of methods depending on proper parameters. The proposed generalization of the Newton multi-step consists of two parts, namely the base method and the multi-step part. The multi-step part requires a single evaluation of function per step. During the multi-step phase, we have to solve systems of linear equations whose coefficient matrix is the Jacobian evaluated at the initial guess. The direct inversion of the Jacobian it is an expensive operation, and hence, for moderately large systems, the lower-upper triangular factorization (LU) is a reasonable choice. Once we have the LU factors of the Jacobian, starting from the base method, we only solve systems of lower and upper triangular matrices that are in fact computationally economical. The developed families involve unknown parameters, and we are interested in setting them with the goal of maximizing the convergence order of the global method. Few families are investigated in some detail. The validity and numerical accuracy of the solution of the system of nonlinear equations are presented via numerical simulations, also involving examples coming from standard approximations of ordinary differential and partial differential nonlinear equations. The obtained results show the efficiency of constructed iterative methods, under the assumption of smoothness of the nonlinear function.

Generalized newton multi-step iterative methods GMNp,mfor solving system of nonlinear equations

Serra-Capizzano, Stefano;
2018-01-01

Abstract

A generalization of the Newton multi-step iterative method is presented, in the form of distinct families of methods depending on proper parameters. The proposed generalization of the Newton multi-step consists of two parts, namely the base method and the multi-step part. The multi-step part requires a single evaluation of function per step. During the multi-step phase, we have to solve systems of linear equations whose coefficient matrix is the Jacobian evaluated at the initial guess. The direct inversion of the Jacobian it is an expensive operation, and hence, for moderately large systems, the lower-upper triangular factorization (LU) is a reasonable choice. Once we have the LU factors of the Jacobian, starting from the base method, we only solve systems of lower and upper triangular matrices that are in fact computationally economical. The developed families involve unknown parameters, and we are interested in setting them with the goal of maximizing the convergence order of the global method. Few families are investigated in some detail. The validity and numerical accuracy of the solution of the system of nonlinear equations are presented via numerical simulations, also involving examples coming from standard approximations of ordinary differential and partial differential nonlinear equations. The obtained results show the efficiency of constructed iterative methods, under the assumption of smoothness of the nonlinear function.
2018
www.tandf.co.uk/journals/titles/00207160.asp
Multi-step Newton iterative methods; ordinary differential equations; partial differential equations; systems of nonlinear equations; Computer Science Applications1707 Computer Vision and Pattern Recognition; Computational Theory and Mathematics; Applied Mathematics
Kouser, Salima; Rehman, Shafiq Ur; Ahmad, Fayyaz; Serra-Capizzano, Stefano; Ullah, Malik Zaka; Alshomrani, Ali Saleh; Aljahdali, Hani M.; Ahmad, Shamshad; Ahmad, Shahid
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2073475
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact