Purpose - The purpose of this paper is to present the synthesis of magnetic fluid characteristics, like diameter of nanoparficles (NPs) and their concentration, in order to obtain a prescribed temperature rate. An evolution strategy algorithm is used in the optimization procedure, while three-dimensional finite-element (FE) modelling is used for magnetic field and thermal field analysis in transient conditions. Design/methodology/approach - FE analysis has been used in order to compute the magnetic and thermal field in a suitable model of the tumor region. The power density due to NP has been accordingly derived. Findings - The NP distribution, giving a prescribed thermal response, is synthesized. Practical implications The proposed method can be used to design a therapeutic treatment based on magnetic fluid hyperthermia. Originality/value - The paper belongs to a streamline of innovative studies on computational hyperthermia.
Synthesizing a nanoparticle distribution in magnetic fluid hyperthermia
E. Sieni
2011-01-01
Abstract
Purpose - The purpose of this paper is to present the synthesis of magnetic fluid characteristics, like diameter of nanoparficles (NPs) and their concentration, in order to obtain a prescribed temperature rate. An evolution strategy algorithm is used in the optimization procedure, while three-dimensional finite-element (FE) modelling is used for magnetic field and thermal field analysis in transient conditions. Design/methodology/approach - FE analysis has been used in order to compute the magnetic and thermal field in a suitable model of the tumor region. The power density due to NP has been accordingly derived. Findings - The NP distribution, giving a prescribed thermal response, is synthesized. Practical implications The proposed method can be used to design a therapeutic treatment based on magnetic fluid hyperthermia. Originality/value - The paper belongs to a streamline of innovative studies on computational hyperthermia.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.