Purpose - The purpose of this paper is to present two simulation strategies for tube induction welding process. Coupled electromagnetic and thermal problem is solved by applying 3D FEM models. The resulting power density and temperature distribution are compared. Design/methodology/approach - FE analysis has been used in order to compute the magnetic and thermal field in a suitable 3D model. Findings - Two strategies for coupled magnetic and thermal simulation with movement are proposed. Practical implications - Reported strategies can be used to design tube induction welding devices and to verify the influence of the main parameters of the process, i.e. welding velocity, frequency, specific and total power. Originality/value - The paper summarizes two different simulation strategies taking into account the movement of the tube through the inductor. In the first strategy, the tube heating is simulated by providing the mean power absorbed by a tube section crossing the inductor. In the second strategy, a spatial translation of the material properties is implemented.

A 3D numerical FEM model for the simulation of induction welding of tubes

M. FORZAN;Sieni E
2011

Abstract

Purpose - The purpose of this paper is to present two simulation strategies for tube induction welding process. Coupled electromagnetic and thermal problem is solved by applying 3D FEM models. The resulting power density and temperature distribution are compared. Design/methodology/approach - FE analysis has been used in order to compute the magnetic and thermal field in a suitable 3D model. Findings - Two strategies for coupled magnetic and thermal simulation with movement are proposed. Practical implications - Reported strategies can be used to design tube induction welding devices and to verify the influence of the main parameters of the process, i.e. welding velocity, frequency, specific and total power. Originality/value - The paper summarizes two different simulation strategies taking into account the movement of the tube through the inductor. In the first strategy, the tube heating is simulated by providing the mean power absorbed by a tube section crossing the inductor. In the second strategy, a spatial translation of the material properties is implemented.
http://www.emeraldinsight.com/doi/pdfplus/10.1108/03321641111152720
Magnetic and thermal coupled simulation with movement; Simulation; Finite element analysis; Tube welding; 3D-FEM computing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/2077269
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact