The main goal of the researches is the development of new approaches, algorithms and numerical techniques for multi-objective optimisation of design of industrial induction heating installations. A multi-objective optimisation problem is mathematically formulated in terms of the typical optimisation criteria, e.g., maximum heating accuracy and minimum energy consumption. Various mathematical methods and algorithms for multi-objective optimisation, such as Non-dominated Sorting Genetic Algorithm (NSGA-II) and optimal control alternance method, have been implemented and integrated in a user-friendly automated optimal design package. Several optimisation procedures have been tested and investigated for a problem-oriented mathematical model in a number of comparative case studies. A general comparison of the design solutions based on NSGA-II and alternance method leads to their good agreement in all investigated cases. The methodology developed is planned to be applied to more complex real-life problems of the optimal design and control of different induction heating systems.

Multi-objective optimisation of induction heating processes: methods of the problem solution and examples based on benchmark model

Michele Forzan;Elisabetta Sieni;
2013-01-01

Abstract

The main goal of the researches is the development of new approaches, algorithms and numerical techniques for multi-objective optimisation of design of industrial induction heating installations. A multi-objective optimisation problem is mathematically formulated in terms of the typical optimisation criteria, e.g., maximum heating accuracy and minimum energy consumption. Various mathematical methods and algorithms for multi-objective optimisation, such as Non-dominated Sorting Genetic Algorithm (NSGA-II) and optimal control alternance method, have been implemented and integrated in a user-friendly automated optimal design package. Several optimisation procedures have been tested and investigated for a problem-oriented mathematical model in a number of comparative case studies. A general comparison of the design solutions based on NSGA-II and alternance method leads to their good agreement in all investigated cases. The methodology developed is planned to be applied to more complex real-life problems of the optimal design and control of different induction heating systems.
2013
Di Barba, Paolo; Pleshivtseva, Yuliya; Rapoport, Edgar; Forzan, Michele; Lupi, Sergio; Sieni, Elisabetta; Nacke, Bernard; Nikanorov, Aleksandr...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2077320
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact