Magnetic Fluid Hyperthermia is a cancer therapy that requires a uniform magnetic field to heat nanoparticles localized in the treatment volume. The efficacy of nanoparticles heating is studied using cells cultured in Petri dishes. The automated optimal design of the inductor to generate the magnetic field to heat nanoparticles in cells cultured in Petri dishes is presented, exploiting field analysis and a new version of an optimization algorithm.

Magnetic Fluid Hyperthermia is a cancer therapy that requires a uniform magnetic field to heat nanoparticles localized in the treatment volume. The efficacy of nanoparticles heating is studied using cells cultured in Petri dishes. The automated optimal design of the inductor to generate the magnetic field to heat nanoparticles in cells cultured in Petri dishes is presented, exploiting field analysis and a new version of an optimization algorithm.

Handling sensitivity in multiobjective design optimization of MFH inductors

Forzan M.;Sieni E.
2017-01-01

Abstract

Magnetic Fluid Hyperthermia is a cancer therapy that requires a uniform magnetic field to heat nanoparticles localized in the treatment volume. The efficacy of nanoparticles heating is studied using cells cultured in Petri dishes. The automated optimal design of the inductor to generate the magnetic field to heat nanoparticles in cells cultured in Petri dishes is presented, exploiting field analysis and a new version of an optimization algorithm.
2017
IEEE CEFC 2016 - 17th Biennial Conference on Electromagnetic Field Computation
9781509010325
17th Biennial IEEE Conference on Electromagnetic Field Computation, IEEE CEFC 2016
Hotel Hilton Miami Downtown, 1601 Biscayne Blvd, usa
2016
Magnetic Fluid Hyperthermia is a cancer therapy that requires a uniform magnetic field to heat nanoparticles localized in the treatment volume. The efficacy of nanoparticles heating is studied using cells cultured in Petri dishes. The automated optimal design of the inductor to generate the magnetic field to heat nanoparticles in cells cultured in Petri dishes is presented, exploiting field analysis and a new version of an optimization algorithm.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2077357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact