This study evaluated the effects of dietary insect meal from Hermetia illucens larvae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Three diets, with increasing levels of insect meal inclusion (10%, 20%, and 30%) and a control diet without insect meal were tested in a 12-week feeding trial. To analyze the resident intestinal microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME pipeline were used. The number of reads taxonomically classified according to the Greengenes database was 1,514,155. Seventy-four Operational Taxonomic Units (OTUs) at 97% identity were identified. The core of adhered intestinal microbiota, i.e., OTUs present in at least 80% of mucosal samples and shared regardless of the diet, was constituted by three OTUs assigned to Propiobacterinae, Shewanella, and Mycoplasma genera, respectively. Fish fed the insect-based diets showed higher bacterial diversity with a reduction in Proteobacteria in comparison to fish fed the fishmeal diet. Insect-meal inclusion in the diet increased the gut abundance of Mycoplasma, which was attributed the ability to produce lactic and acetic acid as final products of its fermentation. We believe that the observed variations on the autochthonous intestinal microbiota composition of trout are principally due to the prebiotic properties of fermentable chitin.

The effects of dietary insect meal from Hermetia illucens prepupae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss)

Rimoldi S;Gini E;IANNINI, FEDERICA;Terova G.
2019-01-01

Abstract

This study evaluated the effects of dietary insect meal from Hermetia illucens larvae on autochthonous gut microbiota of rainbow trout (Oncorhynchus mykiss). Three diets, with increasing levels of insect meal inclusion (10%, 20%, and 30%) and a control diet without insect meal were tested in a 12-week feeding trial. To analyze the resident intestinal microbial communities, the Illumina MiSeq platform for sequencing of 16S rRNA gene and QIIME pipeline were used. The number of reads taxonomically classified according to the Greengenes database was 1,514,155. Seventy-four Operational Taxonomic Units (OTUs) at 97% identity were identified. The core of adhered intestinal microbiota, i.e., OTUs present in at least 80% of mucosal samples and shared regardless of the diet, was constituted by three OTUs assigned to Propiobacterinae, Shewanella, and Mycoplasma genera, respectively. Fish fed the insect-based diets showed higher bacterial diversity with a reduction in Proteobacteria in comparison to fish fed the fishmeal diet. Insect-meal inclusion in the diet increased the gut abundance of Mycoplasma, which was attributed the ability to produce lactic and acetic acid as final products of its fermentation. We believe that the observed variations on the autochthonous intestinal microbiota composition of trout are principally due to the prebiotic properties of fermentable chitin.
2019
http://www.mdpi.com/journal/animals
Aquaculture; Black soldier fly; Gut microbiome; High throughput sequencing; Insect meal;
Rimoldi, S; Gini, E; Iannini, Federica; Gasco, L; Terova, G.
File in questo prodotto:
File Dimensione Formato  
Animals, 2019 Rimoldi Microbiome Trout Insects.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2078130
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 115
social impact