The last two decades have witnessed remarkable advance in our understanding the role of d-amino acids in the mammalian nervous system: from the unknown, to known molecules with unknown functions, to potential central players in health and disease. d-Amino acids have emerged as an important class of signaling molecules. In particular, the exploration of the roles of d-serine in brain physiopathology is a vibrant field that is growing at an accelerating pace. However, disentangling the functions of a chiral molecule in a complex chemical matrice as the brain requires specific measurement and detection methods but is also a challenging task as many molecular tools and models investigators are using can lead to confounded observations. Thus, study of d-amino acids demands accurate methodologies and specific controls, and these have often been lacking. Here we outline best practices for d-amino acid research, with a special emphasis on d-serine. We hope these concepts help move the field to greater rigor and reproducibility, allowing the field to advance.

Investigating brain d-serine: Advocacy for good practices

Pollegioni, Loredano;
2019-01-01

Abstract

The last two decades have witnessed remarkable advance in our understanding the role of d-amino acids in the mammalian nervous system: from the unknown, to known molecules with unknown functions, to potential central players in health and disease. d-Amino acids have emerged as an important class of signaling molecules. In particular, the exploration of the roles of d-serine in brain physiopathology is a vibrant field that is growing at an accelerating pace. However, disentangling the functions of a chiral molecule in a complex chemical matrice as the brain requires specific measurement and detection methods but is also a challenging task as many molecular tools and models investigators are using can lead to confounded observations. Thus, study of d-amino acids demands accurate methodologies and specific controls, and these have often been lacking. Here we outline best practices for d-amino acid research, with a special emphasis on d-serine. We hope these concepts help move the field to greater rigor and reproducibility, allowing the field to advance.
2019
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1748-1716
analytical methods; d-Serine; glia; immunostainings; neurons; NMDA receptors; rescue experiments; serine racemase inhibitors; Physiology
Mothet, Jean-Pierre; Billard, Jean-Marie; Pollegioni, Loredano; Coyle, Joseph T.; Sweedler, Jonathan V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2078302
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 27
social impact