Photodynamic therapy (PDT) of cancer uses photosensitizers (PS), a light source and oxygen to generate high levels of reactive oxygen species (ROS), that exert a cytotoxic action on tumor cells. Recently, it has been shown that mixed non-symmetrical diaryl porphyrins, with two different pendants, are more photodynamically active than symmetrical diaryl porphyrins. In the present study, we investigate the in vitro photodynamic effects of four novel non-symmetrical diaryl porphyrins, two of which bear one pentafluoro-phenyl and one bromo-alkyl (apolar) pendant, whereas the two others bear one pentafluoro-phenyl and one cationic pyridine pendant. The four compounds were tested in a small panel of human cancer cell lines, and their photodynamic activities were compared with that of m-THPC (Foscan), currently the most successful PS approved for clinical use in cancer PDT. The results of the cytotoxicity studies indicate that the two molecules bearing the cationic pendant are more potent in vitro than those with the apolar pendant, and that they are as potent as Foscan. To gain some insights into the mechanism of PS-induced phototoxicity, induction of apoptotic, autophagic and necrotic cell death, and generation of reactive oxygen species (ROS) were evaluated in cancer cells following exposure to the PSs and irradiation. The effect of the PSs on the migratory activity of the cells was also assessed. The data obtained from this work support a greater potency of diaryl porphyrins with a positive charge in inducing cell death, as compared to those with the bromo-alkyl pendant; most importantly, some of these novel compounds exhibit features that might make them superior to the clinically approved PS Foscan.

Synthesis and photodynamic activity of novel non-symmetrical diaryl porphyrins against cancer cell lines.

Enrico Caruso;CERBARA, MONICA;Miryam Chiara Malacarne;Emanuela Marras;Elena Monti
;
Marzia Bruna Gariboldi
2019-01-01

Abstract

Photodynamic therapy (PDT) of cancer uses photosensitizers (PS), a light source and oxygen to generate high levels of reactive oxygen species (ROS), that exert a cytotoxic action on tumor cells. Recently, it has been shown that mixed non-symmetrical diaryl porphyrins, with two different pendants, are more photodynamically active than symmetrical diaryl porphyrins. In the present study, we investigate the in vitro photodynamic effects of four novel non-symmetrical diaryl porphyrins, two of which bear one pentafluoro-phenyl and one bromo-alkyl (apolar) pendant, whereas the two others bear one pentafluoro-phenyl and one cationic pyridine pendant. The four compounds were tested in a small panel of human cancer cell lines, and their photodynamic activities were compared with that of m-THPC (Foscan), currently the most successful PS approved for clinical use in cancer PDT. The results of the cytotoxicity studies indicate that the two molecules bearing the cationic pendant are more potent in vitro than those with the apolar pendant, and that they are as potent as Foscan. To gain some insights into the mechanism of PS-induced phototoxicity, induction of apoptotic, autophagic and necrotic cell death, and generation of reactive oxygen species (ROS) were evaluated in cancer cells following exposure to the PSs and irradiation. The effect of the PSs on the migratory activity of the cells was also assessed. The data obtained from this work support a greater potency of diaryl porphyrins with a positive charge in inducing cell death, as compared to those with the bromo-alkyl pendant; most importantly, some of these novel compounds exhibit features that might make them superior to the clinically approved PS Foscan.
2019
PDT, non-symmetrical diaryl porphyrins, migration, cell death
Caruso, Enrico; Cerbara, Monica; Malacarne, MIRYAM CHIARA; Marras, Emanuela; Monti, ELENA CATERINA GIOVANNA; Gariboldi, MARZIA BRUNA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2079231
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact