RS-fMRI data analysis for functional connectivity explorations is a challenging topic in computational neuroimaging. Several approaches have been investigated to discover whole-brain data features. Among these, clustering techniques based on Competitive Learning (CL) and Spectral Methods (SM) have been shown effective in providing useful information in various contexts. We selected three clustering algorithms and two spectral methods, i.e the clustering algorithm are Self-organising Maps (SOM), Neural Gas (NG) and Growing Neural Gas (GNG), whereas the spectral methods are the classic Principal Component Analysis (PCA) and the Nonlinear Robust Fuzzy Principal Component Analysis (NRFPCA). We validated clustering with Davies–Bouldin Index (DBI) and we selected informative principal components using Random Matrix Theory (RMT). tools. We adopted these techniques to study the intrinsic functional properties of images coming from a shared repository of resting state fMRI experiments (1000 Functional Connectome Project).
Resting state fMRI analysis using unsupervised learning algorithms
Vergani, Alberto Arturo
;Martinelli, Samuele;Binaghi, Elisabetta
2019-01-01
Abstract
RS-fMRI data analysis for functional connectivity explorations is a challenging topic in computational neuroimaging. Several approaches have been investigated to discover whole-brain data features. Among these, clustering techniques based on Competitive Learning (CL) and Spectral Methods (SM) have been shown effective in providing useful information in various contexts. We selected three clustering algorithms and two spectral methods, i.e the clustering algorithm are Self-organising Maps (SOM), Neural Gas (NG) and Growing Neural Gas (GNG), whereas the spectral methods are the classic Principal Component Analysis (PCA) and the Nonlinear Robust Fuzzy Principal Component Analysis (NRFPCA). We validated clustering with Davies–Bouldin Index (DBI) and we selected informative principal components using Random Matrix Theory (RMT). tools. We adopted these techniques to study the intrinsic functional properties of images coming from a shared repository of resting state fMRI experiments (1000 Functional Connectome Project).File | Dimensione | Formato | |
---|---|---|---|
VerganiPostPrint.pdf
non disponibili
Descrizione: Articolo Principale
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.