Thermal gradients lead to macroscopic fluid motion if a confining surface is present along the gradient. This fundamental nonequilibrium effect, known as thermo-osmosis, is held responsible for particle thermophoresis in colloidal suspensions. A unified approach for thermo-osmosis in liquids and in gases is still lacking. Linear response theory is generalized to inhomogeneous systems, leading to an exact microscopic theory for the thermo-osmotic flow, showing that the effect originates from two independent physical mechanisms, playing different roles in the gas and liquid phases, reducing to known expressions in the appropriate limits.

Thermal Forces from a Microscopic Perspective

Anzini P.;FILIBERTI, ZENO;Parola A.
2019-01-01

Abstract

Thermal gradients lead to macroscopic fluid motion if a confining surface is present along the gradient. This fundamental nonequilibrium effect, known as thermo-osmosis, is held responsible for particle thermophoresis in colloidal suspensions. A unified approach for thermo-osmosis in liquids and in gases is still lacking. Linear response theory is generalized to inhomogeneous systems, leading to an exact microscopic theory for the thermo-osmotic flow, showing that the effect originates from two independent physical mechanisms, playing different roles in the gas and liquid phases, reducing to known expressions in the appropriate limits.
2019
http://harvest.aps.org/bagit/articles/10.1103/PhysRevLett.123.028002/apsxml
Anzini, P.; Colombo, G. M.; Filiberti, Zeno; Parola, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2081231
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact