Abstract In this paper we propose a third order accurate finite volume scheme based on a posteriori limiting of polynomial reconstructions within an Adaptive-Mesh-Refinement (AMR) simulation code for hydrodynamics equations in 2D. The a posteriori limiting is based on the detection of problematic cells on a so-called candidate solution computed at each stage of a third order Runge–Kutta scheme. Such detection may include different properties, derived from physics, such as positivity, from numerics, such as a non-oscillatory behavior, or from computer requirements such as the absence of NaN's. Troubled cell values are discarded and re-computed starting again from the previous time-step using a more dissipative scheme but only locally, close to these cells. By locally decrementing the degree of the polynomial reconstructions from 2 to 0 we switch from a third-order to a first-order accurate but more stable scheme. The entropy indicator sensor is used to refine/coarsen the mesh. This sensor is also employed in an a posteriori manner because if some refinement is needed at the end of a time step, then the current time-step is recomputed with the refined mesh, but only locally, close to the new cells. We show on a large set of numerical tests that this a posteriori limiting procedure coupled with the entropy-based AMR technology can maintain not only optimal accuracy on smooth flows but also stability on discontinuous profiles such as shock waves, contacts, interfaces, etc. Moreover numerical evidences show that this approach is at least comparable in terms of accuracy and cost to a more classical CWENO approach within the same AMR context.

Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws based on a posteriori stabilized high order polynomial reconstructions

Matteo Semplice;
2018-01-01

Abstract

Abstract In this paper we propose a third order accurate finite volume scheme based on a posteriori limiting of polynomial reconstructions within an Adaptive-Mesh-Refinement (AMR) simulation code for hydrodynamics equations in 2D. The a posteriori limiting is based on the detection of problematic cells on a so-called candidate solution computed at each stage of a third order Runge–Kutta scheme. Such detection may include different properties, derived from physics, such as positivity, from numerics, such as a non-oscillatory behavior, or from computer requirements such as the absence of NaN's. Troubled cell values are discarded and re-computed starting again from the previous time-step using a more dissipative scheme but only locally, close to these cells. By locally decrementing the degree of the polynomial reconstructions from 2 to 0 we switch from a third-order to a first-order accurate but more stable scheme. The entropy indicator sensor is used to refine/coarsen the mesh. This sensor is also employed in an a posteriori manner because if some refinement is needed at the end of a time step, then the current time-step is recomputed with the refined mesh, but only locally, close to the new cells. We show on a large set of numerical tests that this a posteriori limiting procedure coupled with the entropy-based AMR technology can maintain not only optimal accuracy on smooth flows but also stability on discontinuous profiles such as shock waves, contacts, interfaces, etc. Moreover numerical evidences show that this approach is at least comparable in terms of accuracy and cost to a more classical CWENO approach within the same AMR context.
2018
https://www.sciencedirect.com/science/article/pii/S0021999117307842
Semplice, Matteo; Loubere, Raphael
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2081520
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact