A stochastic model of excitatory and inhibitory interactions which bears universality traits is introduced and studied. The endogenous component of noise, stemming from finite size corrections, drives robust internode correlations that persist at large distances. Antiphase synchrony at small frequencies is resolved on adjacent nodes and found to promote the spontaneous generation of long-ranged stochastic patterns that invade the network as a whole. These patterns are lacking under the idealized deterministic scenario, and could provide hints on how living systems implement and handle a large gallery of delicate computational tasks.
Intertangled stochastic motifs in networks of excitatory-inhibitory units
Ginelli, Francesco;
2017-01-01
Abstract
A stochastic model of excitatory and inhibitory interactions which bears universality traits is introduced and studied. The endogenous component of noise, stemming from finite size corrections, drives robust internode correlations that persist at large distances. Antiphase synchrony at small frequencies is resolved on adjacent nodes and found to promote the spontaneous generation of long-ranged stochastic patterns that invade the network as a whole. These patterns are lacking under the idealized deterministic scenario, and could provide hints on how living systems implement and handle a large gallery of delicate computational tasks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.