We study the mechanism of heat generation, induced by an alternating magnetic field, in magnetite nanoparticles doped with manganese, produced by thermal decomposition from organometallic precursors. We investigate a set of four samples obtained by varying the duration of the reflux treatment carried out at a temperature of 300 degrees C during the synthetic procedure. On increasing this parameter from 60 to 180 minutes, the mean size of the nanoparticles increases, though remaining below 10 nm, as well as the saturation magnetization, which in all the samples, thanks to the Mn doping, is higher than that in magnetite nanoparticles taken as a reference. The combination of these two events has two main consequences. First, it determines the intensity of dipolar interactions between the nanoparticles, thus influencing their magnetic relaxing behavior, which, in turn, is closely related to the heating efficiency. Secondly, in a heating test, it is possible to operate in the regime of non-linear magnetic response of the nanoparticles at values of amplitude and frequency of the alternating field usually employed for biomedical applications. We show that, in this regime, the Specific Absorption Rate (SAR) in each sample depends linearly on the fraction of nanoparticles that are not superparamagnetic. This opens the possibility of modulating the heating capacity of the produced nanoparticles, so as to match specific needs, changing only a single synthesis parameter and opportunely exploiting the strict connection between structural features, magnetic properties and measurement conditions.

Mechanism of magnetic heating in Mn-doped magnetite nanoparticles and the role of intertwined structural and magnetic properties

Sieni E.;
2019-01-01

Abstract

We study the mechanism of heat generation, induced by an alternating magnetic field, in magnetite nanoparticles doped with manganese, produced by thermal decomposition from organometallic precursors. We investigate a set of four samples obtained by varying the duration of the reflux treatment carried out at a temperature of 300 degrees C during the synthetic procedure. On increasing this parameter from 60 to 180 minutes, the mean size of the nanoparticles increases, though remaining below 10 nm, as well as the saturation magnetization, which in all the samples, thanks to the Mn doping, is higher than that in magnetite nanoparticles taken as a reference. The combination of these two events has two main consequences. First, it determines the intensity of dipolar interactions between the nanoparticles, thus influencing their magnetic relaxing behavior, which, in turn, is closely related to the heating efficiency. Secondly, in a heating test, it is possible to operate in the regime of non-linear magnetic response of the nanoparticles at values of amplitude and frequency of the alternating field usually employed for biomedical applications. We show that, in this regime, the Specific Absorption Rate (SAR) in each sample depends linearly on the fraction of nanoparticles that are not superparamagnetic. This opens the possibility of modulating the heating capacity of the produced nanoparticles, so as to match specific needs, changing only a single synthesis parameter and opportunely exploiting the strict connection between structural features, magnetic properties and measurement conditions.
2019
http://pubs.rsc.org/en/journals/journal/nr
Del Bianco, L.; Spizzo, F.; Barucca, G.; Ruggiero, M. R.; Geninatti Crich, S.; Forzan, M.; Sieni, E.; Sgarbossa, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2083108
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact