Gold-decorated TiO2 nanotubes were used for the photocatalytic abatement of Hg(II) in aqueous solutions. The presence of dewetted Au nanoparticles induces a strong enhancement of photocatalytic reduction and scavenging performances, with respect to naked TiO2. In the presence of chlorides, a massive formation of Hg2Cl2 nanowires, produced from Au nanoparticles, was observed using highly Au loaded photocatalysts to treat a 10 ppm Hg(II) solution. EDS and XPS confirmed the nature of the photo-produced nanowires. In the absence of chlorides and/or at lower Hg(II) starting concentrations, the scavenging of mercury proceeds through the formation of Hg-Au amalgams. Solar light driven Hg(II) abatements up to 90% were observed after 24 h. ICP-MS analysis revealed that the removed Hg(II) is accumulated on the photocatalyst surface. Regeneration of Hg-loaded exhaust photocatalysts was easily performed by anodic stripping of Hg(0) and Hg(I) to Hg(II). After four catalytic-regeneration cycles, only a 10% decrease of activity was observed.

Photocatalytic reduction and scavenging of Hg(II) over templated-dewetted Au on TiO2 nanotubes

Spanu D.;BESTETTI, ALESSANDRO;Recchia S.
2019-01-01

Abstract

Gold-decorated TiO2 nanotubes were used for the photocatalytic abatement of Hg(II) in aqueous solutions. The presence of dewetted Au nanoparticles induces a strong enhancement of photocatalytic reduction and scavenging performances, with respect to naked TiO2. In the presence of chlorides, a massive formation of Hg2Cl2 nanowires, produced from Au nanoparticles, was observed using highly Au loaded photocatalysts to treat a 10 ppm Hg(II) solution. EDS and XPS confirmed the nature of the photo-produced nanowires. In the absence of chlorides and/or at lower Hg(II) starting concentrations, the scavenging of mercury proceeds through the formation of Hg-Au amalgams. Solar light driven Hg(II) abatements up to 90% were observed after 24 h. ICP-MS analysis revealed that the removed Hg(II) is accumulated on the photocatalyst surface. Regeneration of Hg-loaded exhaust photocatalysts was easily performed by anodic stripping of Hg(0) and Hg(I) to Hg(II). After four catalytic-regeneration cycles, only a 10% decrease of activity was observed.
2019
http://pubs.rsc.org/en/journals/journal/pp
Spanu, D.; Bestetti, Alessandro; Hildebrand, H.; Schmuki, P.; Altomare, M.; Recchia, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2083577
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact