With the massive explosion of social media platforms such as Twitter and Instagram, people everyday share billions of multimedia posts, containing images and text. Typically, text in these posts is short, informal and noisy, leading to ambiguities which can be resolved using images. In this paper we will explore text-centric Named Entity Recognition task on these multimedia posts. We propose an end to end model which learns a joint representation of a text and an image. Our model extends multi-dimensional self-attention technique, where now image helps to enhance relationship between words. Experiments show that our model is capable of capturing both textual and visual contexts with greater accuracy, achieving state-of-the-art results on Twitter multimodal Named Entity Recognition dataset.

Aiding intra-text representations with visual context for multimodal named entity recognition

ARSHAD, OMER;Gallo Ignazio;Nawaz Shah;Calefati Alessandro
2019-01-01

Abstract

With the massive explosion of social media platforms such as Twitter and Instagram, people everyday share billions of multimedia posts, containing images and text. Typically, text in these posts is short, informal and noisy, leading to ambiguities which can be resolved using images. In this paper we will explore text-centric Named Entity Recognition task on these multimedia posts. We propose an end to end model which learns a joint representation of a text and an image. Our model extends multi-dimensional self-attention technique, where now image helps to enhance relationship between words. Experiments show that our model is capable of capturing both textual and visual contexts with greater accuracy, achieving state-of-the-art results on Twitter multimodal Named Entity Recognition dataset.
2019
2019 15th IAPR International Conference on Document Analysis and Recognition (ICDAR)
9781728128610
International Conference on Document Analysis and Recognition (ICDAR)
Sydney, Australia
20-25 September 2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2083813
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact