In this paper, we propose a design methodology for one-class classifiers using an ensemble-of-classifiers approach. The objective is to select the best structures created during the training phase using an ensemble of spanning trees. It takes the best classifier, partitioning the area near a pattern into γγ-2 sub-spaces and combining all possible spanning trees that can be created starting from γ nodes. The proposed method leverages on a supervised classification methodology and the concept of minimum distance. We evaluate our approach on well-known benchmark datasets and results obtained demonstrate that it achieves comparable and, in many cases, state-of-the-art results. Moreover, it obtains good performance even with unbalanced datasets.

A Classification Methodology Based on Subspace Graphs Learning

R. La Grassa;I. Gallo;A. Calefati;
2019-01-01

Abstract

In this paper, we propose a design methodology for one-class classifiers using an ensemble-of-classifiers approach. The objective is to select the best structures created during the training phase using an ensemble of spanning trees. It takes the best classifier, partitioning the area near a pattern into γγ-2 sub-spaces and combining all possible spanning trees that can be created starting from γ nodes. The proposed method leverages on a supervised classification methodology and the concept of minimum distance. We evaluate our approach on well-known benchmark datasets and results obtained demonstrate that it achieves comparable and, in many cases, state-of-the-art results. Moreover, it obtains good performance even with unbalanced datasets.
2019
2019 International Conference on Digital Image Computing: Techniques and Applications (DICTA)
9781728138572
International Conference on Digital Image Computing: Techniques and Applications (DICTA)
Perth, Australia
2-4 December 2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2083815
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact