Convergence and normal continuity analysis of a bivariate nonstationary (level-dependent) subdivision scheme for 2-manifold meshes with arbitrary topology is still an open issue. Exploiting ideas from the theory of asymptotically equivalent subdivision schemes, in this paper we derive new sufficient conditions for establishing convergence and normal continuity of any rotationally symmetric, nonstationary subdivision scheme near an extraordinary vertex/face.

Convergence and Normal Continuity Analysis of Nonstationary Subdivision Schemes Near Extraordinary Vertices and Faces

Conti C.;Donatelli M.;Romani L.
;
Novara P.
2019-01-01

Abstract

Convergence and normal continuity analysis of a bivariate nonstationary (level-dependent) subdivision scheme for 2-manifold meshes with arbitrary topology is still an open issue. Exploiting ideas from the theory of asymptotically equivalent subdivision schemes, in this paper we derive new sufficient conditions for establishing convergence and normal continuity of any rotationally symmetric, nonstationary subdivision scheme near an extraordinary vertex/face.
2019
http://link.springer-ny.com/link/service/journals/00365/index.htm
Convergence; Extraordinary vertex/face; Nonstationary subdivision; Normal continuity;
Conti, C.; Donatelli, M.; Romani, L.; Novara, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2085959
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 8
social impact