We show how certain topological properties of co-Kähler manifolds derive from those of the Kähler manifolds which construct them. We go beyond Betti number results and describe the cohomology algebra structure of co-Kähler manifolds. As a consequence, we prove that co-Kähler manifolds satisfy the Toral Rank Conjecture: dim(H∗(M;Q))≥2r, for any r-torus T which acts almost freely on M.

Hereditary Properties of co-Kähler manifolds

Bazzoni G;
2017-01-01

Abstract

We show how certain topological properties of co-Kähler manifolds derive from those of the Kähler manifolds which construct them. We go beyond Betti number results and describe the cohomology algebra structure of co-Kähler manifolds. As a consequence, we prove that co-Kähler manifolds satisfy the Toral Rank Conjecture: dim(H∗(M;Q))≥2r, for any r-torus T which acts almost freely on M.
2017
https://arxiv.org/abs/1311.5675
co-kähler manifold; toral rank conjecture
Bazzoni, G; Lupton, G; Oprea, J
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2086808
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact