We present some examples of locally conformal symplectic structures of the first kind on compact nilmanifolds which do not admit Vaisman metrics. One of these examples does not admit locally conformal K"ahler metrics and all the structures come from left-invariant locally conformal symplectic structures on the corresponding nilpotent Lie groups. Under certain topological restrictions related with the compactness of the canonical foliation, we prove a structure theorem for locally conformal symplectic manifolds of the first kind. In the non compact case, we show that they are the product of a real line with a compact contact manifold and, in the compact case, we obtain that they are mapping tori of compact contact manifolds by strict contactomorphisms. Motivated by the aforementioned examples, we also study left-invariant locally conformal symplectic structures on Lie groups. In particular, we obtain a complete description of these structures (with non-zero Lee 1-form) on connected simply connected nilpotent Lie groups in terms of locally conformal symplectic extensions and symplectic double extensions of symplectic nilpotent Lie groups. In order to obtain this description, we study locally conformal symplectic structures of the first kind on Lie algebras.

On locally conformal symplectic manifolds of the first kind

Bazzoni G;
2018-01-01

Abstract

We present some examples of locally conformal symplectic structures of the first kind on compact nilmanifolds which do not admit Vaisman metrics. One of these examples does not admit locally conformal K"ahler metrics and all the structures come from left-invariant locally conformal symplectic structures on the corresponding nilpotent Lie groups. Under certain topological restrictions related with the compactness of the canonical foliation, we prove a structure theorem for locally conformal symplectic manifolds of the first kind. In the non compact case, we show that they are the product of a real line with a compact contact manifold and, in the compact case, we obtain that they are mapping tori of compact contact manifolds by strict contactomorphisms. Motivated by the aforementioned examples, we also study left-invariant locally conformal symplectic structures on Lie groups. In particular, we obtain a complete description of these structures (with non-zero Lee 1-form) on connected simply connected nilpotent Lie groups in terms of locally conformal symplectic extensions and symplectic double extensions of symplectic nilpotent Lie groups. In order to obtain this description, we study locally conformal symplectic structures of the first kind on Lie algebras.
2018
https://www.sciencedirect.com/science/article/pii/S0007449717300945
locally conformal symplectic structure; contact structure; mapping torus
Bazzoni, G; Marrero, J C
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2086812
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact