We show how certain topological properties of co-Kähler manifolds derive from those of the Kähler manifolds which construct them. In particular, we show that the existence of parallel forms on a co-Kähler manifold reduces the computation of cohomology from the de Rham complex to certain amenable sub-cdga's defined by geometrically natural operators derived from the co-Kähler structure. This provides a simpler proof of the formality of the foliation minimal model in this context.

Parallel forms, co-Kähler manifolds and their models

Bazzoni G;
2018-01-01

Abstract

We show how certain topological properties of co-Kähler manifolds derive from those of the Kähler manifolds which construct them. In particular, we show that the existence of parallel forms on a co-Kähler manifold reduces the computation of cohomology from the de Rham complex to certain amenable sub-cdga's defined by geometrically natural operators derived from the co-Kähler structure. This provides a simpler proof of the formality of the foliation minimal model in this context.
2018
https://projecteuclid.org/euclid.bbms/1523412047
parallel form; coKähler manifolds
Bazzoni, G; Lupton, G; Oprea, J
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2086826
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact