A low energy antiproton transport from the ASACUSA's antiproton accumulation trap (MUSASHI trap) to the antihydrogen production trap (double cusp trap) is developed. The longitudinal antiproton energy spread after the transport line is 0.23±0.02 eV, compared with 15 eV with a previous method used in 2012. This reduction is achieved by an adiabatic transport beamline with several pulse-driven coaxial coils. Antihydrogen atoms are synthesized by directly injecting the antiprotons into a positron plasma, resulting in the higher production rate.
Antiproton beams with low energy spread for antihydrogen production
Mascagna V.;
2019-01-01
Abstract
A low energy antiproton transport from the ASACUSA's antiproton accumulation trap (MUSASHI trap) to the antihydrogen production trap (double cusp trap) is developed. The longitudinal antiproton energy spread after the transport line is 0.23±0.02 eV, compared with 15 eV with a previous method used in 2012. This reduction is achieved by an adiabatic transport beamline with several pulse-driven coaxial coils. Antihydrogen atoms are synthesized by directly injecting the antiprotons into a positron plasma, resulting in the higher production rate.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.