Risk measures are defined as functionals of the portfolio loss distribution, thus implicitly assuming the knowledge of such a distribution. However, in practical applications, the need for estimation arises and with it the need to study the effects of mis-specification errors, as well as estimation errors on the final conclusion. In this paper we focus on the qualitative robustness of a sequence of estimators for set-valued risk measures. These properties are studied in detail for two well-known examples of set-valued risk measures: the value-at-risk and the maximum average value-at-risk. Our results illustrate, in particular, that estimation of set-valued value-at-risk can be given in terms of random sets. Moreover, we observe that historical set-valued value-at-risk, while failing to be sub-additive, leads to a more robust procedure than alternatives such as the maximum likelihood average value at-risk.
Qualitative robustness of set-valued value-at-risk
Crespi G. P.
;Mastrogiacomo E.
2020-01-01
Abstract
Risk measures are defined as functionals of the portfolio loss distribution, thus implicitly assuming the knowledge of such a distribution. However, in practical applications, the need for estimation arises and with it the need to study the effects of mis-specification errors, as well as estimation errors on the final conclusion. In this paper we focus on the qualitative robustness of a sequence of estimators for set-valued risk measures. These properties are studied in detail for two well-known examples of set-valued risk measures: the value-at-risk and the maximum average value-at-risk. Our results illustrate, in particular, that estimation of set-valued value-at-risk can be given in terms of random sets. Moreover, we observe that historical set-valued value-at-risk, while failing to be sub-additive, leads to a more robust procedure than alternatives such as the maximum likelihood average value at-risk.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.