The synthesis of optically pure enantiomers is a challenge for traditional chemistry. Enzymes often perform better than inorganic catalysts because of their enantioselectivity, effectiveness and ecological sustainability. However, natural enzymes that evolved under the drive of natural selective pressure for their biological function, are not suitable for most industrial applications 1. For this reason, enzymes must be improved by protein engineering. L-amino acid deaminase from Proteus myxofaciens (PmaLAAD) catalyzes the oxidative deamination of L-amino acids (AAs) to the corresponding -keto acids (KA). This biocatalyst can be used for the setup “green processes” to produce pure KA and D-AAs, which are used as raw materials for the synthesis of drugs and agrochemicals. In this project, several biocatalytic processes based on PmaLAAD have been optimized for the bioconversion, deracemization and stereoinversion of (un)natural L-AAs 2. Several natural or synthetic L-AAs have been used as substratet obtaining conversion yields close to 100%. The knowledge of the 3D structure of PmaLAAD 3 was exploited to produce several enzyme variants possessing animproved activity on L-1-naphthylalanine (L-1-Nal) through a semi-rational design approach supported by computational analysis. The most interesting variant (F318A/V412A/V438P-PmaLAAD) was able to convert D,L-1-Nal with a rate 7.5 fold higher than the wild type.

Developing of a novel enantioselective biocatalyst acting on L-amino acids of biotechnological interest through a "semi-rational design" approach supported by computational analyses / Melis, Roberta. - (2018).

Developing of a novel enantioselective biocatalyst acting on L-amino acids of biotechnological interest through a "semi-rational design" approach supported by computational analyses.

Melis, Roberta
2018-01-01

Abstract

The synthesis of optically pure enantiomers is a challenge for traditional chemistry. Enzymes often perform better than inorganic catalysts because of their enantioselectivity, effectiveness and ecological sustainability. However, natural enzymes that evolved under the drive of natural selective pressure for their biological function, are not suitable for most industrial applications 1. For this reason, enzymes must be improved by protein engineering. L-amino acid deaminase from Proteus myxofaciens (PmaLAAD) catalyzes the oxidative deamination of L-amino acids (AAs) to the corresponding -keto acids (KA). This biocatalyst can be used for the setup “green processes” to produce pure KA and D-AAs, which are used as raw materials for the synthesis of drugs and agrochemicals. In this project, several biocatalytic processes based on PmaLAAD have been optimized for the bioconversion, deracemization and stereoinversion of (un)natural L-AAs 2. Several natural or synthetic L-AAs have been used as substratet obtaining conversion yields close to 100%. The knowledge of the 3D structure of PmaLAAD 3 was exploited to produce several enzyme variants possessing animproved activity on L-1-naphthylalanine (L-1-Nal) through a semi-rational design approach supported by computational analysis. The most interesting variant (F318A/V412A/V438P-PmaLAAD) was able to convert D,L-1-Nal with a rate 7.5 fold higher than the wild type.
2018
Biotransformation, flavoenzyme, biocatalysis, L-amino acid deaminase, protein engineering
Developing of a novel enantioselective biocatalyst acting on L-amino acids of biotechnological interest through a "semi-rational design" approach supported by computational analyses / Melis, Roberta. - (2018).
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_MelisRoberta_part1.pdf

Open Access dal 11/12/2020

Descrizione: testo tesi parte 1
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri
PhD_Thesis_MelisRoberta_articolo_CatalysisScienceTechnology.pdf

embargo fino al 01/01/2100

Descrizione: articolo
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 7.76 MB
Formato Adobe PDF
7.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhD_Thesis_MelisRoberta_completa.pdf

embargo fino al 01/01/2100

Descrizione: testo completo tesi
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 30.46 MB
Formato Adobe PDF
30.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhD_Thesis_MelisRoberta_part4.pdf

Open Access dal 11/12/2020

Descrizione: testo tesi parte 4
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 6.28 MB
Formato Adobe PDF
6.28 MB Adobe PDF Visualizza/Apri
PhD_Thesis_MelisRoberta_articolo_AdvancedSynthesisCatalysis.pdf

embargo fino al 01/01/2100

Descrizione: articolo
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 6.53 MB
Formato Adobe PDF
6.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhD_Thesis_MelisRoberta_part3.pdf

Open Access dal 11/12/2020

Descrizione: testo tesi parte 3
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF Visualizza/Apri
PhD_Thesis_MelisRoberta_part2.pdf

Open Access dal 11/12/2020

Descrizione: testo tesi parte 2
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 820.11 kB
Formato Adobe PDF
820.11 kB Adobe PDF Visualizza/Apri
PhD_Thesis_MelisRoberta_articolo_BiotechnologyAdvances.pdf

embargo fino al 01/01/2100

Descrizione: articolo
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 7.76 MB
Formato Adobe PDF
7.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2090685
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact