We summarize the fundamental aspects of dual-readout calorimetry, a calorimetric technique able to overcome the non-compensation problem by means of two independent scintillation and Cherenkov light signals detection. The expected ultimate energy resolution for single-hadron detection, together with the excellent particle identification capability, makes a dual-readout fiber calorimeter one of the most promising options for future leptonic colliders. In this paper, we include the main benefits of a new silicon photomultiplier-based readout system that allows to sample showers with an unprecedented spatial resolution.
Dual-readout calorimetry
Caccia M.;Santoro R.;Antonello M.
2019-01-01
Abstract
We summarize the fundamental aspects of dual-readout calorimetry, a calorimetric technique able to overcome the non-compensation problem by means of two independent scintillation and Cherenkov light signals detection. The expected ultimate energy resolution for single-hadron detection, together with the excellent particle identification capability, makes a dual-readout fiber calorimeter one of the most promising options for future leptonic colliders. In this paper, we include the main benefits of a new silicon photomultiplier-based readout system that allows to sample showers with an unprecedented spatial resolution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.