A smart environment is a physical space where devices are connected to provide continuous support to individuals and make their life more comfortable. For this purpose, a smart environment collects, stores, and processes a massive amount of personal data. In general, service providers collect these data according to their privacy policies. To enhance the privacy control, individuals can explicitly express their privacy preferences, stating conditions on how their data have to be used and managed. Typically, privacy checking is handled through the hard matching of users' privacy preferences against service providers' privacy policies, by denying all service requests whose privacy policies do not fully match with individual's privacy preferences. However, this hard matching might be too restrictive in a smart environment because it denies the services that partially satisfy the individual's privacy preferences. To cope with this challenge, in this paper, we propose a soft privacy matching mechanism, able to relax, in a controlled way, some conditions of users' privacy preferences such to match with service providers' privacy policies. At this aim, we exploit machine learning algorithms to build a classifier, which is able to make decisions on future service requests, by learning which privacy preference components a user is prone to relax, as well as the relaxation tolerance. We test our approach on two realistic datasets, obtaining promising results.

Adapting users' privacy preferences in smart environments

Carminati B.;Ferrari E.
2019-01-01

Abstract

A smart environment is a physical space where devices are connected to provide continuous support to individuals and make their life more comfortable. For this purpose, a smart environment collects, stores, and processes a massive amount of personal data. In general, service providers collect these data according to their privacy policies. To enhance the privacy control, individuals can explicitly express their privacy preferences, stating conditions on how their data have to be used and managed. Typically, privacy checking is handled through the hard matching of users' privacy preferences against service providers' privacy policies, by denying all service requests whose privacy policies do not fully match with individual's privacy preferences. However, this hard matching might be too restrictive in a smart environment because it denies the services that partially satisfy the individual's privacy preferences. To cope with this challenge, in this paper, we propose a soft privacy matching mechanism, able to relax, in a controlled way, some conditions of users' privacy preferences such to match with service providers' privacy policies. At this aim, we exploit machine learning algorithms to build a classifier, which is able to make decisions on future service requests, by learning which privacy preference components a user is prone to relax, as well as the relaxation tolerance. We test our approach on two realistic datasets, obtaining promising results.
2019
Proceedings - 2019 IEEE International Congress on Internet of Things, ICIOT 2019 - Part of the 2019 IEEE World Congress on Services
978-1-7281-2714-9
4th IEEE International Congress on Internet of Things, ICIOT 2019
ita
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2095698
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact