This paper deals with the electrochemical doping of different poly(ethylenedioxythiophene) (PEDOT)-based active layers performed in an organic electrochemical transistor configuration through the mapping of in situ conductance trends during electrochemical doping and dedoping. The experiments are complemented by UV/Vis/NIR in situ spectroelectrochemistry in the wavelength range from 400 to 1600 nm, which allow monitoring of the development of the neutral and charged redox species. Both electropolymerized EDOT-based layers and solution-processed chemically synthesized PEDOT films are characterized. In addition to pure electropolymerized PEDOT (e-PEDOT), tris(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl) (TPA-EDOT3) is electrodeposited to generate highly branched networks of P(TPA-EDOT3). The solution-deposited PEDOT films contain poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with ratios of 1:2.5 and 1:6. Overall, we find that e-PEDOT and PEDOT:PSS(1:2.5) behave like classical conjugated polymers with a plateau-like conductance over a wide potential region. In contrast, PEDOT:PSS(1:6) and P(TPA-EDOT3) show rather bell-shaped conductance profiles. The mixed-valence conductivity model is used to interpret the experimental results in terms of the number of accessible redox states. We suggest that the bell-shaped conductance in the case of PEDOT:PSS(1:6) is caused by a high amount of PSS insulator that limits the inter-chain interaction between PEDOT moieties and in the case of P(TPA-EDOT3) by its distorted molecular architecture.

Conductance and spectroscopic mapping of EDOT polymer films upon electrochemical doping

Malacrida C.;Scapinello L.;Penoni A.;
2020-01-01

Abstract

This paper deals with the electrochemical doping of different poly(ethylenedioxythiophene) (PEDOT)-based active layers performed in an organic electrochemical transistor configuration through the mapping of in situ conductance trends during electrochemical doping and dedoping. The experiments are complemented by UV/Vis/NIR in situ spectroelectrochemistry in the wavelength range from 400 to 1600 nm, which allow monitoring of the development of the neutral and charged redox species. Both electropolymerized EDOT-based layers and solution-processed chemically synthesized PEDOT films are characterized. In addition to pure electropolymerized PEDOT (e-PEDOT), tris(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)phenyl) (TPA-EDOT3) is electrodeposited to generate highly branched networks of P(TPA-EDOT3). The solution-deposited PEDOT films contain poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with ratios of 1:2.5 and 1:6. Overall, we find that e-PEDOT and PEDOT:PSS(1:2.5) behave like classical conjugated polymers with a plateau-like conductance over a wide potential region. In contrast, PEDOT:PSS(1:6) and P(TPA-EDOT3) show rather bell-shaped conductance profiles. The mixed-valence conductivity model is used to interpret the experimental results in terms of the number of accessible redox states. We suggest that the bell-shaped conductance in the case of PEDOT:PSS(1:6) is caused by a high amount of PSS insulator that limits the inter-chain interaction between PEDOT moieties and in the case of P(TPA-EDOT3) by its distorted molecular architecture.
2020
OECT; PEDOT; cyclic voltammetry; spectroelectrochemistry; mixed-valence conductivity
Wieland, M.; Malacrida, C.; Yu, Q.; Schlewitz, C.; Scapinello, L.; Penoni, A.; Ludwigs, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2096204
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 26
social impact