The formation of copper(II)-mediated base pairs involving pyridine-2,6-dicarboxylate derivatives and canonical nucleosides has proven to be a smart approach to introduce copper(II) ions at specific locations of DNA duplexes. However, the structural characteristics of these metalized base pairs have not yet been revealed, and their effect on DNA structures is difficult to assess. Herein, for the first time, we report on the different structural details of copper-mediated base pairs formed by themselves and in DNA duplexes. The individual base pairs [Cu(mcheld)(N3-Cyt)(H2O)]·3H2O (1Cu_Cyt), [Cu(mcheld)(N7-Ade)(H2O)2]·2H2O (1Cu_Ade), [Cu(mcheld)(N7-Gua)(H2O)] (1Cu_Gua), and [Cu(mcheld)(N1-7CAde)(H2O)]·H2O (1Cu_7CAde) were obtained from the reaction of the metal complex [Cu(mcheld)(H2O)2] (1Cu) (mcheld = 4-methoxypyridine-2,6-dicarboxylic acid) with model nucleosides (Cyt = N1-methylcytosine, Ade = N9-ethyladenine, Gua = N9-propylguanine, 7CAde = N9-propyl-7-deazaadenine). The crystal structure of the five complexes was determined by means of single-crystal X-ray diffraction. Furthermore, the formation of the 1Cu_Cyt and 1Cu_Gua base pairs in the middle of DNA duplexes, duplex DNA15 (917 atoms) and DNA10 (649 atoms), respectively, was studied using highly demanding ab initio computational calculations. These theoretical studies aimed to validate, from a structural point of view, whether base pairs of the kind 1Cu_nucleosides can be included in a DNA double helix and how this situation affects the double-helical structure. The results indicate that the 1Cu_Cyt and 1Cu_Gua base pairs can be formed in a DNA molecule without significant structural constraints. In addition, the double-helix DNA structure remains virtually unchanged when it contains these Cu(II)-mediated base pairs.

Comparative Structural Study of Metal-Mediated Base Pairs Formed outside and inside DNA Molecules

Galli S.;
2020-01-01

Abstract

The formation of copper(II)-mediated base pairs involving pyridine-2,6-dicarboxylate derivatives and canonical nucleosides has proven to be a smart approach to introduce copper(II) ions at specific locations of DNA duplexes. However, the structural characteristics of these metalized base pairs have not yet been revealed, and their effect on DNA structures is difficult to assess. Herein, for the first time, we report on the different structural details of copper-mediated base pairs formed by themselves and in DNA duplexes. The individual base pairs [Cu(mcheld)(N3-Cyt)(H2O)]·3H2O (1Cu_Cyt), [Cu(mcheld)(N7-Ade)(H2O)2]·2H2O (1Cu_Ade), [Cu(mcheld)(N7-Gua)(H2O)] (1Cu_Gua), and [Cu(mcheld)(N1-7CAde)(H2O)]·H2O (1Cu_7CAde) were obtained from the reaction of the metal complex [Cu(mcheld)(H2O)2] (1Cu) (mcheld = 4-methoxypyridine-2,6-dicarboxylic acid) with model nucleosides (Cyt = N1-methylcytosine, Ade = N9-ethyladenine, Gua = N9-propylguanine, 7CAde = N9-propyl-7-deazaadenine). The crystal structure of the five complexes was determined by means of single-crystal X-ray diffraction. Furthermore, the formation of the 1Cu_Cyt and 1Cu_Gua base pairs in the middle of DNA duplexes, duplex DNA15 (917 atoms) and DNA10 (649 atoms), respectively, was studied using highly demanding ab initio computational calculations. These theoretical studies aimed to validate, from a structural point of view, whether base pairs of the kind 1Cu_nucleosides can be included in a DNA double helix and how this situation affects the double-helical structure. The results indicate that the 1Cu_Cyt and 1Cu_Gua base pairs can be formed in a DNA molecule without significant structural constraints. In addition, the double-helix DNA structure remains virtually unchanged when it contains these Cu(II)-mediated base pairs.
2020
Dominguez-Martin, A.; Galli, S.; Dobado, J. A.; Santamaria-Diaz, N.; Perez-Romero, A.; Galindo, M. A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2097130
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact