The objective of this study was to assess the ability of nanofiltration of albumin solution, prothrombin complex (PTC) and factor IX (FIX) to remove two small, non-enveloped DNA viruses, parvovirus B19 (B19V) and torque teno virus (TTV). Virus removal was investigated with down-scale experiments performed with sequential steps of 35-nm and 15-nm nanofiltrations of products spiked with virus DNA-positive sera. Viral loads were determined by real-time PCRs. The 15-nm nanofiltration removed more than 4.0 B19V log from all the products, TTV was reduced of more than 3.0 log from albumin solution and FIX by 35-nm and 15-nm nanofiltrations, respectively, being viral DNA undetectable after these treatments. Traces of TTV were still found in PTC after the 15-nm nanofiltration. In conclusion, nanofiltration can be efficacious in removing small naked viruses but, since viruses with similar features can differently respond to the treatment, a careful monitoring of large-scale nanofiltration should be performed. © 2009 British Blood Transfusion Society.

Effectiveness of nanofiltration in removing small non-enveloped viruses from three different plasma-derived products

Maggi, F.;
2009-01-01

Abstract

The objective of this study was to assess the ability of nanofiltration of albumin solution, prothrombin complex (PTC) and factor IX (FIX) to remove two small, non-enveloped DNA viruses, parvovirus B19 (B19V) and torque teno virus (TTV). Virus removal was investigated with down-scale experiments performed with sequential steps of 35-nm and 15-nm nanofiltrations of products spiked with virus DNA-positive sera. Viral loads were determined by real-time PCRs. The 15-nm nanofiltration removed more than 4.0 B19V log from all the products, TTV was reduced of more than 3.0 log from albumin solution and FIX by 35-nm and 15-nm nanofiltrations, respectively, being viral DNA undetectable after these treatments. Traces of TTV were still found in PTC after the 15-nm nanofiltration. In conclusion, nanofiltration can be efficacious in removing small naked viruses but, since viruses with similar features can differently respond to the treatment, a careful monitoring of large-scale nanofiltration should be performed. © 2009 British Blood Transfusion Society.
2009
Albumin solution; Factor IX; Nanofiltration; Parvovirus B19; Plasma-derived products; Prothrombin complex; TTV; Blood Component Removal; Blood Proteins; Humans; Ultrafiltration; Parvovirus B19; Human; Torque teno virus; Virus Inactivation; Hematology
Menconi, M. C.; Maggi, F.; Zakrzewska, K.; Salotti, V.; Giovacchini, P.; Farina, C.; Andreoli, Elisabetta; Corcioli, F.; Bendinelli, M.; Azzi, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2102449
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact