We investigate the formation dynamics of sonic horizons in a Bose gas confined in a (quasi) one-dimensional trap. This system is one of the most promising realizations of the analogue gravity paradigm and has already been successfully studied experimentally. Taking advantage of the exact solution of the one-dimensional, hard-core, Bose model (Tonks-Girardeau gas), we show that by switching on a step potential, either a sonic, black-hole-like horizon or a black/white hole pair may form, according to the initial velocity of the fluid. Our simulations never suggest the formation of an isolated white-hole horizon, although a stable stationary solution of the dynamical equations with those properties is analytically found. Moreover, we show that the semiclassical dynamics, based on the Gross-Pitaevskii equation, conforms to the exact solution only in the case of fully subsonic flows while a stationary solution exhibiting a supersonic transition is never reached dynamically.

Formation Dynamics of Black- and White-Hole Horizons in an Analogue Gravity Model

Parola A.
2020-01-01

Abstract

We investigate the formation dynamics of sonic horizons in a Bose gas confined in a (quasi) one-dimensional trap. This system is one of the most promising realizations of the analogue gravity paradigm and has already been successfully studied experimentally. Taking advantage of the exact solution of the one-dimensional, hard-core, Bose model (Tonks-Girardeau gas), we show that by switching on a step potential, either a sonic, black-hole-like horizon or a black/white hole pair may form, according to the initial velocity of the fluid. Our simulations never suggest the formation of an isolated white-hole horizon, although a stable stationary solution of the dynamical equations with those properties is analytically found. Moreover, we show that the semiclassical dynamics, based on the Gross-Pitaevskii equation, conforms to the exact solution only in the case of fully subsonic flows while a stationary solution exhibiting a supersonic transition is never reached dynamically.
2020
Analogue gravity; Black holes; Bose-Einstein condensates; Quantum field theory in curved spacetime; Sonic horizons; White holes
Tettamanti, M.; Parola, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2102490
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact