Despite the recent enthusiasm generated by novel immunotherapeutic approaches against cancer based on immune checkpoint inhibitors, it becomes increasingly clear that single immune-based strategies are not sufficient to defeat the various forms and types of tumors. Within this frame, novel vaccination strategies that are based on optimal stimulation of the key cell governing adaptive immunity, the CD4+ T helper cell, will certainly help in constructing more efficient treatments. In this review, we will focus on this aspect, mainly describing our past and recent contributions that, starting with a rather unorthodox approach, have ended up with the proposition of a new idea for making available an unprecedented extended repertoire of tumor antigens, both in quantitative and qualitative terms, to tumor-specific CD4+ T helper cells. Our approach is based on rendering the very same tumor cells antigen presenting cells for their own tumor antigens by gene transfer of CIITA, the major transcriptional coordinator of MHC class II expression discovered in our laboratory. CIITA-driven MHC class II-expressing tumor cells optimally stimulate in vivo tumor specific MHC class II-restricted CD4 T cells generating specific and long lasting protective immunity against the tumor. We will discuss the mechanism underlying protection and elaborate not only on the applicability of this approach for novel vaccination strategies amenable to clinical setting, but also on the consequence of our discoveries on sedimented immunological dogmas that are related to antigen presentation.

Unveiling the hidden treasury: Ciita-driven mhc class ii expression in tumor cells to dig up the relevant repertoire of tumor antigens for optimal stimulation of tumor specific cd4+ t helper cells

Forlani G.
Primo
;
Shallak M.
Secondo
;
Celesti F.
Penultimo
;
Accolla R. S.
Ultimo
2020-01-01

Abstract

Despite the recent enthusiasm generated by novel immunotherapeutic approaches against cancer based on immune checkpoint inhibitors, it becomes increasingly clear that single immune-based strategies are not sufficient to defeat the various forms and types of tumors. Within this frame, novel vaccination strategies that are based on optimal stimulation of the key cell governing adaptive immunity, the CD4+ T helper cell, will certainly help in constructing more efficient treatments. In this review, we will focus on this aspect, mainly describing our past and recent contributions that, starting with a rather unorthodox approach, have ended up with the proposition of a new idea for making available an unprecedented extended repertoire of tumor antigens, both in quantitative and qualitative terms, to tumor-specific CD4+ T helper cells. Our approach is based on rendering the very same tumor cells antigen presenting cells for their own tumor antigens by gene transfer of CIITA, the major transcriptional coordinator of MHC class II expression discovered in our laboratory. CIITA-driven MHC class II-expressing tumor cells optimally stimulate in vivo tumor specific MHC class II-restricted CD4 T cells generating specific and long lasting protective immunity against the tumor. We will discuss the mechanism underlying protection and elaborate not only on the applicability of this approach for novel vaccination strategies amenable to clinical setting, but also on the consequence of our discoveries on sedimented immunological dogmas that are related to antigen presentation.
2020
2020
CD4+ T helper cells; CIITA; Combination therapy; MHC class II; Tumor vaccines
Forlani, G.; Shallak, M.; Celesti, F.; Accolla, R. S.
File in questo prodotto:
File Dimensione Formato  
cancers-12-03181-v2.pdf

accesso aperto

Descrizione: Articolo su rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2103084
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact