Iterative soft thresholding algorithms combine one step of a Landweber method (or accelerated variants) with one step of thresholding of the wavelet (framelet) coefficients. In this paper, we improve these methods by using the framelet multilevel decomposition for defining a multigrid deconvolution with grid transfer operators given by the low-pass filter of the frame. Assuming that an estimate of the noise level is available, we combine a recently proposed iterative method for ℓ2-regularization with linear framelet denoising by soft-thresholding. This combination allows a fast frequency filtering in the Fourier domain and produces a sparse reconstruction in the wavelet domain. Moreover, its employment in a multigrid scheme ensures stable convergence and a reduced noise amplification. The proposed multigrid method is independent of the imposed boundary conditions, and the iterations can be easily projected onto a closed and convex set, e.g., the nonnegative cone. We study the convergence of the proposed algorithm and prove that it is a regularization method. Several numerical results prove that this approach is able to provide highly accurate reconstructions in several different scenarios without requiring the setting of any parameter.

A multigrid frame based method for image deblurring

Buccini A.
;
Donatelli M.
2020-01-01

Abstract

Iterative soft thresholding algorithms combine one step of a Landweber method (or accelerated variants) with one step of thresholding of the wavelet (framelet) coefficients. In this paper, we improve these methods by using the framelet multilevel decomposition for defining a multigrid deconvolution with grid transfer operators given by the low-pass filter of the frame. Assuming that an estimate of the noise level is available, we combine a recently proposed iterative method for ℓ2-regularization with linear framelet denoising by soft-thresholding. This combination allows a fast frequency filtering in the Fourier domain and produces a sparse reconstruction in the wavelet domain. Moreover, its employment in a multigrid scheme ensures stable convergence and a reduced noise amplification. The proposed multigrid method is independent of the imposed boundary conditions, and the iterations can be easily projected onto a closed and convex set, e.g., the nonnegative cone. We study the convergence of the proposed algorithm and prove that it is a regularization method. Several numerical results prove that this approach is able to provide highly accurate reconstructions in several different scenarios without requiring the setting of any parameter.
2020
Image deblurring; Iterative regularization methods; Multigrid methods
Buccini, A.; Donatelli, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2103109
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact