Podzols that have developed on glacial and periglacial features provide the opportunity to reconstruct glacial evolution after the Last Glacial Maximum (LGM) using different soil indices. Analysing 17 soils classified as podzol, we used the crystallinity ratio of free iron oxides (CRF) on both the A and Bs horizons, and absolute ages for the same landforms containing the soil profile, to create dating curves. Two equations were generated: age = 4566.9 × ln (CRF) + 1760 (1), and age = 3907 × ln (CRF) + 3508.2 (2). The reliability of the curves was evaluated with the Feo/Fed ratio, and with the difference of ages calculated using both equations. Equation (2) is considered more reliable because the A horizon may be influenced by new pedogenesis on the pre-existing podzol, leading to the development of a new type of soil. By dating the soils, we reconstructed the glacial history of the three main upper branches of the LGM Adda Glacier in the Central Italian Alps, specifically the Stelvio Pass area (ST), Gavia Pass area (GV), and the Val Viola valley (VV). Seven glacial advances were identified at 16.7–14.7 ka (phase I), 12.3 ka (phase II), 11 ka (phase III), 10–9.7 ka (phase IV), 9 ka (phase V), 7.5 ka (phase VI) and 5.3 ka (phase VII). The first five phases are chronologically similar to the main Late Pleistocene–Early Holocene phases recorded in the Central European Alps. The last two Holocene phases, which are both longer in duration than the Little Ice Age, are recorded in ST and GV. Interestingly, these phases generally are not recorded in the rest of the Central European Alps, where the late Holocene glaciers were smaller than their present size.

The use of iron chemical analysis of podzols to date the Late Pleistocene–Holocene deglaciation history of the Central Italian Alps

Longhi A.
Primo
;
Monticelli D.;Guglielmin M.
2020-01-01

Abstract

Podzols that have developed on glacial and periglacial features provide the opportunity to reconstruct glacial evolution after the Last Glacial Maximum (LGM) using different soil indices. Analysing 17 soils classified as podzol, we used the crystallinity ratio of free iron oxides (CRF) on both the A and Bs horizons, and absolute ages for the same landforms containing the soil profile, to create dating curves. Two equations were generated: age = 4566.9 × ln (CRF) + 1760 (1), and age = 3907 × ln (CRF) + 3508.2 (2). The reliability of the curves was evaluated with the Feo/Fed ratio, and with the difference of ages calculated using both equations. Equation (2) is considered more reliable because the A horizon may be influenced by new pedogenesis on the pre-existing podzol, leading to the development of a new type of soil. By dating the soils, we reconstructed the glacial history of the three main upper branches of the LGM Adda Glacier in the Central Italian Alps, specifically the Stelvio Pass area (ST), Gavia Pass area (GV), and the Val Viola valley (VV). Seven glacial advances were identified at 16.7–14.7 ka (phase I), 12.3 ka (phase II), 11 ka (phase III), 10–9.7 ka (phase IV), 9 ka (phase V), 7.5 ka (phase VI) and 5.3 ka (phase VII). The first five phases are chronologically similar to the main Late Pleistocene–Early Holocene phases recorded in the Central European Alps. The last two Holocene phases, which are both longer in duration than the Little Ice Age, are recorded in ST and GV. Interestingly, these phases generally are not recorded in the rest of the Central European Alps, where the late Holocene glaciers were smaller than their present size.
2020
glacial reconstruction; Holocene; Italian Alps; Late Pleistocene; soils
Longhi, A.; Monticelli, D.; Guglielmin, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2103906
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact