Dual-readout calorimetry is a calorimetric technique able to overcome the noncompensation limit by simultaneously detecting scintillation and Cherenkov light. Scintillating photons provide a signal related to the energy deposition in the calorimeter by all ionising particles while Cherenkov photons provide a signal almost exclusively related to the electromagnetic component in the hadronic shower. Fluctuations among the electromagnetic and non-electromagnetic component of hadronic induced showers represent the major limit to reach resolutions needed in experiments at future leptonic colliders. In a dual-readout calorimeter, by looking at the two independent signals, it is possible to measure, event by event, the electromagnetic fraction and to correctly reconstruct the primary hadron energy. Applications of the dual-readout method in fiber-sampling calorimetry have been shown to be able to provide single hadron detection with an energy resolution around 30%/E, electromagnetic resolution around 10%/E, excellent particle identification capability, resulting in one of the most promising option for future leptonic colliders. Status-of-art of the dual-readout calorimetry, as well as, perspective in the developments toward scalable solution for 4π detectors are presented in this paper. This includes, study on the material choice, SiPM readout of the fibers, possible segmentation of the fibers to enhance particle ID capability.
Present status and perspective of dual-readout calorimetry for future accelerators
Antonello M.;Caccia M.;Santoro R.;
2020-01-01
Abstract
Dual-readout calorimetry is a calorimetric technique able to overcome the noncompensation limit by simultaneously detecting scintillation and Cherenkov light. Scintillating photons provide a signal related to the energy deposition in the calorimeter by all ionising particles while Cherenkov photons provide a signal almost exclusively related to the electromagnetic component in the hadronic shower. Fluctuations among the electromagnetic and non-electromagnetic component of hadronic induced showers represent the major limit to reach resolutions needed in experiments at future leptonic colliders. In a dual-readout calorimeter, by looking at the two independent signals, it is possible to measure, event by event, the electromagnetic fraction and to correctly reconstruct the primary hadron energy. Applications of the dual-readout method in fiber-sampling calorimetry have been shown to be able to provide single hadron detection with an energy resolution around 30%/E, electromagnetic resolution around 10%/E, excellent particle identification capability, resulting in one of the most promising option for future leptonic colliders. Status-of-art of the dual-readout calorimetry, as well as, perspective in the developments toward scalable solution for 4π detectors are presented in this paper. This includes, study on the material choice, SiPM readout of the fibers, possible segmentation of the fibers to enhance particle ID capability.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.