In order to provide a structural basis for a physical understanding of exchange bias in metal/magnetic-oxide interfaces, we have determined the structure of the Fe/NiO(001) interface by means of x-ray absorption spectroscopy and ab initio density functional theory calculations. A Fe-Ni alloyed phase on top of an interfacial FeO planar layer is formed. The FeO layer exhibits a 7% expanded interlayer distance and a 0.3 angstrom buckling; its presence is predicted to increase the spin magnetic moment of the interface Fe atoms by 0.6 mu(B), compared to the ideally abrupt interface. RI Manghi, Franca/G-8719-2012
Iron oxidation, interfacial expansion, and buckling at the Fe/NiO(001) interface
Di Giustino L;
2006-01-01
Abstract
In order to provide a structural basis for a physical understanding of exchange bias in metal/magnetic-oxide interfaces, we have determined the structure of the Fe/NiO(001) interface by means of x-ray absorption spectroscopy and ab initio density functional theory calculations. A Fe-Ni alloyed phase on top of an interfacial FeO planar layer is formed. The FeO layer exhibits a 7% expanded interlayer distance and a 0.3 angstrom buckling; its presence is predicted to increase the spin magnetic moment of the interface Fe atoms by 0.6 mu(B), compared to the ideally abrupt interface. RI Manghi, Franca/G-8719-2012I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.