We consider the space-time discretization of the diffusion equation, using an isogeometric analysis (IgA) approximation in space and a discontinuous Galerkin (DG) approximation in time. Drawing inspiration from a former spectral analysis, we propose for the resulting space-time linear system a multigrid preconditioned GMRES method, which combines a preconditioned GMRES with a standard multigrid acting only in space. The performance of the proposed solver is illustrated through numerical experiments, which show its competitiveness in terms of iteration count, run-time and parallel scaling.

Fast Parallel Solver for the Space-time IgA-DG Discretization of the Diffusion Equation

Garoni C.;Serra Capizzano S.
2021-01-01

Abstract

We consider the space-time discretization of the diffusion equation, using an isogeometric analysis (IgA) approximation in space and a discontinuous Galerkin (DG) approximation in time. Drawing inspiration from a former spectral analysis, we propose for the resulting space-time linear system a multigrid preconditioned GMRES method, which combines a preconditioned GMRES with a standard multigrid acting only in space. The performance of the proposed solver is illustrated through numerical experiments, which show its competitiveness in terms of iteration count, run-time and parallel scaling.
2021
Diffusion equation; Discontinuous Galerkin; Isogeometric analysis; Multigrid; Parallel solver; Preconditioned GMRES; Spectral distribution
Benedusi, P.; Ferrari, P.; Garoni, C.; Krause, R.; Serra Capizzano, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2119490
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact