The density of states of Dirac fermions with a random mass on a two-dimensional lattice is considered. We give the explicit asymptotic form of the single-electron density of states as a function of both energy and (average) Dirac mass, in the regime where all states are localized. We make use of a weak-disorder expansion in the parameter g/m2, where g is the strength of disorder and m the average Dirac mass for the case in which the evaluation of the (supersymmetric) integrals corresponds to non-uniform solutions of the saddle point equation. The resulting density of states has tails which deviate from the typical pure Gaussian form by an analytic prefactor.

Tails of the density of states of two-dimensional Dirac fermions

Jug G.;
2000-01-01

Abstract

The density of states of Dirac fermions with a random mass on a two-dimensional lattice is considered. We give the explicit asymptotic form of the single-electron density of states as a function of both energy and (average) Dirac mass, in the regime where all states are localized. We make use of a weak-disorder expansion in the parameter g/m2, where g is the strength of disorder and m the average Dirac mass for the case in which the evaluation of the (supersymmetric) integrals corresponds to non-uniform solutions of the saddle point equation. The resulting density of states has tails which deviate from the typical pure Gaussian form by an analytic prefactor.
2000
localised states; metal-insulator transition; integer quantum Halleffect
Villain-Guillot, S.; Jug, G.; Ziegler, K.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2119526
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact