The theory of block generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the spectral distribution of block-structured matrices arising from the discretization of differential problems, with a special reference to systems of differential equations (DEs) and to the higher-order finite element or discontinuous Galerkin approximation of both scalar and vectorial DEs. In the present paper, the theory of block GLT sequences is extended by proving that {f(An)}n is a block GLT sequence as long as f is continuous and {An}n is a block GLT sequence formed by Hermitian matrices. It is also provided a relevant application of this result to the computation of the distribution of the numerical eigenvalues obtained from the higher-order isogeometric Galerkin discretization of second-order variable-coefficient differential eigenvalue problems (a topic of interest not only in numerical analysis but also in engineering).
Block generalized locally toeplitz sequences: The case of matrix functions and an engineering application
Garoni C.;Serra Capizzano S.
2019-01-01
Abstract
The theory of block generalized locally Toeplitz (GLT) sequences is a powerful apparatus for computing the spectral distribution of block-structured matrices arising from the discretization of differential problems, with a special reference to systems of differential equations (DEs) and to the higher-order finite element or discontinuous Galerkin approximation of both scalar and vectorial DEs. In the present paper, the theory of block GLT sequences is extended by proving that {f(An)}n is a block GLT sequence as long as f is continuous and {An}n is a block GLT sequence formed by Hermitian matrices. It is also provided a relevant application of this result to the computation of the distribution of the numerical eigenvalues obtained from the higher-order isogeometric Galerkin discretization of second-order variable-coefficient differential eigenvalue problems (a topic of interest not only in numerical analysis but also in engineering).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.