Transglutaminase 2 (TG2) is a multifunctional protein with Ca2+-dependent transamidating and G protein activity. Previously, we reported that tgm2 −/− mice have an impaired insulin secretion and that naturally occurring TG2 mutations associated with familial, early-onset type 2 diabetes, show a defective transamidating activity. Aim of this study was to get a better insight into the role of TG2 in insulin secretion by identifying substrates of TG2 transamidating activity in the pancreatic beta cell line INS-1E. To this end, we labeled INS-1E that are capable of secreting insulin upon glucose stimulation in the physiologic range, with an artificial acyl acceptor (biotinamido-pentylamine) or donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8 min. Biotinylated proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. In addition, subcellular localization of TG2 in human endocrine pancreas was studied by electron microscopy. Among several TG2’s transamidating substrates in INS-1E, mass spectrometry identified cytoplasmic actin (a result confirmed in human pancreatic islet), tropomyosin, and molecules that participate in insulin granule structure (e.g., GAPDH), glucose metabolism, or [Ca2+] sensing (e.g., calreticulin). Physical interaction between TG2 and cytoplasmic actin during glucose-stimulated first-phase insulin secretion was confirmed by co-immunoprecipitation. Electron microscopy revealed that TG2 is localized close to insulin and glucagon granules in human pancreatic islet. We propose that TG2’s role in insulin secretion may involve cytoplasmic actin remodeling and may have a regulative action on other proteins during granule movement. A similar role of TG2 in glucagon secretion is also suggested

Transglutaminase 2 transamidation activity during first-phase insulin secretion: natural substrates in INS-1E

La Rosa S;
2013-01-01

Abstract

Transglutaminase 2 (TG2) is a multifunctional protein with Ca2+-dependent transamidating and G protein activity. Previously, we reported that tgm2 −/− mice have an impaired insulin secretion and that naturally occurring TG2 mutations associated with familial, early-onset type 2 diabetes, show a defective transamidating activity. Aim of this study was to get a better insight into the role of TG2 in insulin secretion by identifying substrates of TG2 transamidating activity in the pancreatic beta cell line INS-1E. To this end, we labeled INS-1E that are capable of secreting insulin upon glucose stimulation in the physiologic range, with an artificial acyl acceptor (biotinamido-pentylamine) or donor (biotinylated peptide), in basal condition and after stimulus with glucose for 2, 5, and 8 min. Biotinylated proteins were analyzed by two-dimensional electrophoresis and mass spectrometry. In addition, subcellular localization of TG2 in human endocrine pancreas was studied by electron microscopy. Among several TG2’s transamidating substrates in INS-1E, mass spectrometry identified cytoplasmic actin (a result confirmed in human pancreatic islet), tropomyosin, and molecules that participate in insulin granule structure (e.g., GAPDH), glucose metabolism, or [Ca2+] sensing (e.g., calreticulin). Physical interaction between TG2 and cytoplasmic actin during glucose-stimulated first-phase insulin secretion was confirmed by co-immunoprecipitation. Electron microscopy revealed that TG2 is localized close to insulin and glucagon granules in human pancreatic islet. We propose that TG2’s role in insulin secretion may involve cytoplasmic actin remodeling and may have a regulative action on other proteins during granule movement. A similar role of TG2 in glucagon secretion is also suggested
2013
Russo, L; Marsella, C; Nardo, G; Massignan, T; Alessio, M; Piermarini, E; La Rosa, S; Finzi, G; Bonetto, V; Bertuzzi, F; Maechler, P; Massa, O
File in questo prodotto:
File Dimensione Formato  
acta diabetol. 2012 suppl. .pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 5.92 MB
Formato Adobe PDF
5.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Acta Diabetol 2013.PDF

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 776.51 kB
Formato Adobe PDF
776.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2119927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact