We propose a new simple construction of hyperbolas, via a string passing through the foci, that shares properties of the classic “gardener’s ellipse” construction and Perrault’s construction of the tractrix as the locus of a dragged point, subject to frictional forces, at the end of a link of fixed length. We show that a frictional device such as this, with a single frictional element, traces the same locus regardless of the friction model, provided only that this is isotropic. This allows the introduction of a “purely geometrical” principle for tractional constructions more general than that of Huygens (1693).
Gardener’s Hyperbolas and the Dragged-Point Principle
Milici P.
;
2021-01-01
Abstract
We propose a new simple construction of hyperbolas, via a string passing through the foci, that shares properties of the classic “gardener’s ellipse” construction and Perrault’s construction of the tractrix as the locus of a dragged point, subject to frictional forces, at the end of a link of fixed length. We show that a frictional device such as this, with a single frictional element, traces the same locus regardless of the friction model, provided only that this is isotropic. This allows the introduction of a “purely geometrical” principle for tractional constructions more general than that of Huygens (1693).File | Dimensione | Formato | |
---|---|---|---|
Gardener s Hyperbolas and the Dragged Point Principle.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
850.39 kB
Formato
Adobe PDF
|
850.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.