Zeolitic imidazolate frameworks (ZIFs) undergo pressure-induced phase transitions that are peculiar to each ZIF. The phase transition is associated with the rotation of the imidazolate, and it is accompanied by an increase of their pore openings, affecting ZIFs performance in separation processes. This phenomenon is known as the gate opening or the swing effect. Here we report the metal dependence of the ambient pressure and high pressure (HP) phases of ZIF-8(M) with M = Mg, Fe, and Zn, determined by using periodic Kohn-Sham density functional models. We show that the substitution of Zn with Mg or Fe has a big influence on the gate opening energy, which significantly decreases, an opposite trend than what was previously reported upon functionalization of the linker. The lowest energy phase of ZIF-8(Fe) is different than for ZIF-8(Mg) and ZIF-8(Zn), and its structure is significantly closer to the HP phase. Multireference wave function methods have been used to study the electronic structure of ZIF-8(Fe), confirming the metal center to be high spin (S = 2) divalent iron in antiferromagnetic coupling. The high-spin nature of the iron species coupled with a band gap in the visible light range makes ZIF-8(Fe) an interesting material for catalysis and photocatalysis.

Modeling metal influence on the gate opening in ZIF-8 materials

Vitillo J. G.
Primo
;
2021-01-01

Abstract

Zeolitic imidazolate frameworks (ZIFs) undergo pressure-induced phase transitions that are peculiar to each ZIF. The phase transition is associated with the rotation of the imidazolate, and it is accompanied by an increase of their pore openings, affecting ZIFs performance in separation processes. This phenomenon is known as the gate opening or the swing effect. Here we report the metal dependence of the ambient pressure and high pressure (HP) phases of ZIF-8(M) with M = Mg, Fe, and Zn, determined by using periodic Kohn-Sham density functional models. We show that the substitution of Zn with Mg or Fe has a big influence on the gate opening energy, which significantly decreases, an opposite trend than what was previously reported upon functionalization of the linker. The lowest energy phase of ZIF-8(Fe) is different than for ZIF-8(Mg) and ZIF-8(Zn), and its structure is significantly closer to the HP phase. Multireference wave function methods have been used to study the electronic structure of ZIF-8(Fe), confirming the metal center to be high spin (S = 2) divalent iron in antiferromagnetic coupling. The high-spin nature of the iron species coupled with a band gap in the visible light range makes ZIF-8(Fe) an interesting material for catalysis and photocatalysis.
2021
2021
Vitillo, J. G.; Gagliardi, L.
File in questo prodotto:
File Dimensione Formato  
acs.chemmater.1c00623.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.09 MB
Formato Adobe PDF
5.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2120952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact