The properties of metal-organic frameworks (MOFs) based on triiron oxo-centered (Fe3O) metal nodes are often related to the efficiency of the removal of the solvent molecules and the counteranion chemisorbed on the Fe3O unit by postsynthetic thermal treatment. Temperature, time, and the reaction environment play a significant role in modifying key features of the materials, that is, the number of open metal sites and the reduction of Fe(III) centers to Fe(II). IR spectroscopy allows the inspection of these postsynthetic modifications by using carbon monoxide (CO) and nitric oxide (NO) as probe molecules. However, the reference data sets are based on spectra recorded for iron zeolites and oxides, whose structures are different from the Fe3O one. We used density functional theory to study how the adsorption enthalpy and the vibrational bands of CO and NO are modified upon dehydration and reduction of Fe3O metal nodes. We obtained a set of theoretical spectra that can model the modification observed in previously reported experimental spectra. Several CO and NO bands were previously assigned to heterogeneous Fe(II) and Fe(III) sites, suggesting a large defectivity of the materials. On the basis of the calculations, we propose an alternative assignment of these bands by considering only crystallographic iron sites. These findings affect the common description of Fe3O-based MOFs as highly defective materials. We expect these results to be of interest to the large community of scientists working on Fe(II)- and Fe(III)-based MOFs and related materials.

Thermal Treatment Effect on CO and NO Adsorption on Fe(II) and Fe(III) Species in Fe3O-Based MIL-Type Metal-Organic Frameworks: A Density Functional Theory Study

Vitillo J. G.
Primo
;
2021-01-01

Abstract

The properties of metal-organic frameworks (MOFs) based on triiron oxo-centered (Fe3O) metal nodes are often related to the efficiency of the removal of the solvent molecules and the counteranion chemisorbed on the Fe3O unit by postsynthetic thermal treatment. Temperature, time, and the reaction environment play a significant role in modifying key features of the materials, that is, the number of open metal sites and the reduction of Fe(III) centers to Fe(II). IR spectroscopy allows the inspection of these postsynthetic modifications by using carbon monoxide (CO) and nitric oxide (NO) as probe molecules. However, the reference data sets are based on spectra recorded for iron zeolites and oxides, whose structures are different from the Fe3O one. We used density functional theory to study how the adsorption enthalpy and the vibrational bands of CO and NO are modified upon dehydration and reduction of Fe3O metal nodes. We obtained a set of theoretical spectra that can model the modification observed in previously reported experimental spectra. Several CO and NO bands were previously assigned to heterogeneous Fe(II) and Fe(III) sites, suggesting a large defectivity of the materials. On the basis of the calculations, we propose an alternative assignment of these bands by considering only crystallographic iron sites. These findings affect the common description of Fe3O-based MOFs as highly defective materials. We expect these results to be of interest to the large community of scientists working on Fe(II)- and Fe(III)-based MOFs and related materials.
2021
Vitillo, J. G.; Gagliardi, L.
File in questo prodotto:
File Dimensione Formato  
acs.inorgchem.1c01044.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2120954
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact