The catalytic activity of anionic ruthenium complexes toward the transformation of bio-ethanol to 1-butanol and higher alcohols is found to be dependent on the imidazolium counterion. After the identification of a parallel reaction involving the catalyst in hydrogen evolution, conversion and selectivity are impressively boosted by the addition of p-benzoquinones as co-catalysts. The catalytic system avoids the side reaction and led to highly competitive conversions up to 88% (0.2 % mol ruthenium catalyst loading, 1.5 % mol benzoquinone loading). Butanol and higher alcohols are produced in yields up to 85% (overall selectivity 97%) as a mixture of valuable alcohols for advanced biofuel and lubricants applications. The catalytic system can be recycled and the reaction shows comparable efficiency on a real matrix (alcohol from wine production chain wastes) even in the presence of significant amounts of water, thus closing a hypothetic economic circle. A reaction mechanism is proposed for the most promising ruthenium complex working in cooperation with the most efficient co-catalyst: p-benzoquinone.

Boosting the guerbet reaction: A cooperative catalytic system for the efficient bio-ethanol refinery to second-generation biofuels

Lucarelli, Carlo;
2022-01-01

Abstract

The catalytic activity of anionic ruthenium complexes toward the transformation of bio-ethanol to 1-butanol and higher alcohols is found to be dependent on the imidazolium counterion. After the identification of a parallel reaction involving the catalyst in hydrogen evolution, conversion and selectivity are impressively boosted by the addition of p-benzoquinones as co-catalysts. The catalytic system avoids the side reaction and led to highly competitive conversions up to 88% (0.2 % mol ruthenium catalyst loading, 1.5 % mol benzoquinone loading). Butanol and higher alcohols are produced in yields up to 85% (overall selectivity 97%) as a mixture of valuable alcohols for advanced biofuel and lubricants applications. The catalytic system can be recycled and the reaction shows comparable efficiency on a real matrix (alcohol from wine production chain wastes) even in the presence of significant amounts of water, thus closing a hypothetic economic circle. A reaction mechanism is proposed for the most promising ruthenium complex working in cooperation with the most efficient co-catalyst: p-benzoquinone.
2022
2021
Cesari, Cristiana; Gagliardi, Anna; Messori, Alessandro; Monti, Nicola; Zanotti, Valerio; Zacchini, Stefano; Rivalta, Ivan; Calcagno, Francesco; Lucarelli, Carlo; Tabanelli, Tommaso; Cavani, Fabrizio; Mazzoni, Rita
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2122304
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact