Many recent researches have investigated the deviations from the Friedmannian cosmological model, as well as their consequences on unexplained cosmological phenomena, such as dark matter and the acceleration of the Universe. On one hand, a first-order perturbative study of matter inhomogeneity returned a partial explanation of dark matter and dark energy, as relativistic effects due to the retarded potentials of far objects. On the other hand, the fractal cosmology, now approximated by a Lemaitre–Tolman–Bondi (LTB) metric, results in distortions of the luminosity distances of SNe Ia, explaining the acceleration as apparent. In this work, we extend the LTB metric to ancient times. The origin of the fractal distribution of matter is explained as the matter remnant after the matter–antimatter recombination epoch. We show that the evolution of such a inhomogeneity necessarily requires a dynamical generalization of LTB, and we propose a particular solution.
On generalized Lemaitre–Tolman–Bondi metric: Fractal matter at the end of matter–antimatter recombination
Cacciatori, Sergio L.;Re, Federico
2021-01-01
Abstract
Many recent researches have investigated the deviations from the Friedmannian cosmological model, as well as their consequences on unexplained cosmological phenomena, such as dark matter and the acceleration of the Universe. On one hand, a first-order perturbative study of matter inhomogeneity returned a partial explanation of dark matter and dark energy, as relativistic effects due to the retarded potentials of far objects. On the other hand, the fractal cosmology, now approximated by a Lemaitre–Tolman–Bondi (LTB) metric, results in distortions of the luminosity distances of SNe Ia, explaining the acceleration as apparent. In this work, we extend the LTB metric to ancient times. The origin of the fractal distribution of matter is explained as the matter remnant after the matter–antimatter recombination epoch. We show that the evolution of such a inhomogeneity necessarily requires a dynamical generalization of LTB, and we propose a particular solution.File | Dimensione | Formato | |
---|---|---|---|
Cacciatori et al_IJMPD_2021.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
413.21 kB
Formato
Adobe PDF
|
413.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.