We describe two interesting and innovative strands of Murray Aitkin's research publications, dealing with mixture models and with Bayesian inference. Of his considerable publications on mixture models, we focus on a nonparametric random effects approach in generalized linear mixed modelling, which has proven useful in a wide variety of applications. As an early proponent of ways of implementing the Bayesian paradigm, Aitkin proposed an alternative Bayes factor based on a posterior mean likelihood. We discuss these innovative approaches and some research lines motivated by them and also suggest future related methodological implementations.
Reflections on Murray Aitkin's contributions to nonparametric mixture models and Bayes factors
Mira A.
2021-01-01
Abstract
We describe two interesting and innovative strands of Murray Aitkin's research publications, dealing with mixture models and with Bayesian inference. Of his considerable publications on mixture models, we focus on a nonparametric random effects approach in generalized linear mixed modelling, which has proven useful in a wide variety of applications. As an early proponent of ways of implementing the Bayesian paradigm, Aitkin proposed an alternative Bayes factor based on a posterior mean likelihood. We discuss these innovative approaches and some research lines motivated by them and also suggest future related methodological implementations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.