In a Bohmian quantum cosmology scenario, we investigate some quantum effects on the evolution of the primordial universe arising from the adoption of an alternative non-trivial ordering to the quantization of the constrained Hamiltonian of a minimally coupled scalar field. The Wheeler–DeWitt equation has a contribution from the change in factor ordering, hence there are new quantum effects. We compare the results between the non-trivial and the trivial ordering cases, showing that the classical limit is valid for both orderings, but new bouncing and cyclic solutions are present in the non-trivial case. Additionally, we show that the non-singular solutions already present in the trivial ordering formalism keep valid.
Bouncing and cyclic quantum primordial universes and the ordering problem
PIATTELLA O
2020-01-01
Abstract
In a Bohmian quantum cosmology scenario, we investigate some quantum effects on the evolution of the primordial universe arising from the adoption of an alternative non-trivial ordering to the quantization of the constrained Hamiltonian of a minimally coupled scalar field. The Wheeler–DeWitt equation has a contribution from the change in factor ordering, hence there are new quantum effects. We compare the results between the non-trivial and the trivial ordering cases, showing that the classical limit is valid for both orderings, but new bouncing and cyclic solutions are present in the non-trivial case. Additionally, we show that the non-singular solutions already present in the trivial ordering formalism keep valid.File | Dimensione | Formato | |
---|---|---|---|
Torres_2020_Class._Quantum_Grav._37_105005.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.