We revisit the analysis made by Hwang and Noh [JCAP 1310 (2013)] aiming the construction of a Newtonian set of equations incorporating pressure effects typical of the General Relativity theory. We explicitly derive the Hwang-Noh equations, comparing them with similar computations found in the literature. Then, we investigate i) the cosmological expansion, ii) linear cosmological perturbations theory and iii) stellar equilibrium by using the new set of equations and comparing the results with those coming from the usual Newtonian theory, from the Neo-Newtonian theory and from the General Relativity theory. We show that the predictions for the background evolution of the Universe are deeply changed with respect to the General Relativity theory: the acceleration of the Universe is achieved with positive pressure. On the other hand, the behaviour of small cosmological perturbations reproduces the one found in the relativistic context, even if only at small scales. We argue that this last result may open new possibilities for numerical simulations for structure formation in the Universe. Finally, the properties of neutron stars are qualitatively reproduced by Hwang-Noh equations, but the upper mass limit is at least one order of magnitude higher than the one obtained in General Relativity.

Cosmology and stellar equilibrium using Newtonian hydrodynamics with general relativistic pressure

PIATTELLA O
2016-01-01

Abstract

We revisit the analysis made by Hwang and Noh [JCAP 1310 (2013)] aiming the construction of a Newtonian set of equations incorporating pressure effects typical of the General Relativity theory. We explicitly derive the Hwang-Noh equations, comparing them with similar computations found in the literature. Then, we investigate i) the cosmological expansion, ii) linear cosmological perturbations theory and iii) stellar equilibrium by using the new set of equations and comparing the results with those coming from the usual Newtonian theory, from the Neo-Newtonian theory and from the General Relativity theory. We show that the predictions for the background evolution of the Universe are deeply changed with respect to the General Relativity theory: the acceleration of the Universe is achieved with positive pressure. On the other hand, the behaviour of small cosmological perturbations reproduces the one found in the relativistic context, even if only at small scales. We argue that this last result may open new possibilities for numerical simulations for structure formation in the Universe. Finally, the properties of neutron stars are qualitatively reproduced by Hwang-Noh equations, but the upper mass limit is at least one order of magnitude higher than the one obtained in General Relativity.
2016
http://dx.doi.org/10.1088/1475-7516/2016/04/034
P. O., Baqui; J. C., Fabris; Piattella, O
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2125229
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact