Climate change can affect freshwater communities superimposing on other major stressors, such as water exploitation, with effects still poorly understood. The exacerbation of naturally-occurring periods of low flows has been reported as a major hydrological effect of water diversions, with severe impacts on river benthic macroinvertebrate communities. This study aimed at assessing long-term modifications of low-flow events in a large lowland Italian river possibly associated to climate change and the effects of these events, intensified by water withdrawals, on benthic macroin-vertebrates. A 77-year dataset on daily discharge was thus analyzed through Mann-Kendall test and Sen’s method to investigate modifications of the main hydrological parameters. Moreover, macroinvertebrates were collected during the low-flow periods that occurred from 2010 to 2015 at three sites downstream of water withdrawals, representing three different conditions of hydrological impairment. After assessing possible differences in taxonomical and functional composition between sites and impairment conditions, redundancy analysis and ordinary least squares regression were performed to link benthos metrics to environmental (hydrological and physico-chemical) characteris-tics. An increase in the duration of the low-flow periods and reduced summer flows were detected on the long term, and the magnitude of low flows was significantly altered by water withdrawals. These hydrological features shaped both structural and functional characteristics of benthic assemblages, highlighting the need for a more environmentally-sustainable water resource management in the current context of climate change.

Climate change and water exploitation as co-impact sources on river benthic macroinvertebrates

Salmaso F.;Crosa G.;Espa P.;Quadroni S.
2021

Abstract

Climate change can affect freshwater communities superimposing on other major stressors, such as water exploitation, with effects still poorly understood. The exacerbation of naturally-occurring periods of low flows has been reported as a major hydrological effect of water diversions, with severe impacts on river benthic macroinvertebrate communities. This study aimed at assessing long-term modifications of low-flow events in a large lowland Italian river possibly associated to climate change and the effects of these events, intensified by water withdrawals, on benthic macroin-vertebrates. A 77-year dataset on daily discharge was thus analyzed through Mann-Kendall test and Sen’s method to investigate modifications of the main hydrological parameters. Moreover, macroinvertebrates were collected during the low-flow periods that occurred from 2010 to 2015 at three sites downstream of water withdrawals, representing three different conditions of hydrological impairment. After assessing possible differences in taxonomical and functional composition between sites and impairment conditions, redundancy analysis and ordinary least squares regression were performed to link benthos metrics to environmental (hydrological and physico-chemical) characteris-tics. An increase in the duration of the low-flow periods and reduced summer flows were detected on the long term, and the magnitude of low flows was significantly altered by water withdrawals. These hydrological features shaped both structural and functional characteristics of benthic assemblages, highlighting the need for a more environmentally-sustainable water resource management in the current context of climate change.
Benthic communities; Global warming; Hydrological parameters; Long-term monitoring; Low flows; Lowland river; Water diversion; Water management
Salmaso, F.; Crosa, G.; Espa, P.; Quadroni, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11383/2125638
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact